include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6,6,2}*1152f
if this polytope has a name.
Group : SmallGroup(1152,157863)
Rank : 6
Schlafli Type : {2,4,6,6,2}
Number of vertices, edges, etc : 2, 4, 12, 18, 6, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,3,6,2}*576
3-fold quotients : {2,4,6,2,2}*384b
6-fold quotients : {2,4,3,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)(10,45)(11,48)(12,47)
(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)(21,58)(22,57)(23,60)
(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)(32,67)(33,70)(34,69)
(35,72)(36,71)(37,74)(38,73);;
s2 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,27)(16,29)(17,28)(18,30)(19,35)
(20,37)(21,36)(22,38)(23,31)(24,33)(25,32)(26,34)(40,41)(43,47)(44,49)(45,48)
(46,50)(51,63)(52,65)(53,64)(54,66)(55,71)(56,73)(57,72)(58,74)(59,67)(60,69)
(61,68)(62,70);;
s3 := ( 3,55)( 4,56)( 5,58)( 6,57)( 7,51)( 8,52)( 9,54)(10,53)(11,59)(12,60)
(13,62)(14,61)(15,43)(16,44)(17,46)(18,45)(19,39)(20,40)(21,42)(22,41)(23,47)
(24,48)(25,50)(26,49)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)(34,65)
(35,71)(36,72)(37,74)(38,73);;
s4 := ( 7,11)( 8,12)( 9,13)(10,14)(19,23)(20,24)(21,25)(22,26)(31,35)(32,36)
(33,37)(34,38)(43,47)(44,48)(45,49)(46,50)(55,59)(56,60)(57,61)(58,62)(67,71)
(68,72)(69,73)(70,74);;
s5 := (75,76);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s1*s2*s3*s1*s2*s3,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)(10,45)(11,48)
(12,47)(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)(21,58)(22,57)
(23,60)(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)(32,67)(33,70)
(34,69)(35,72)(36,71)(37,74)(38,73);
s2 := Sym(76)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,27)(16,29)(17,28)(18,30)
(19,35)(20,37)(21,36)(22,38)(23,31)(24,33)(25,32)(26,34)(40,41)(43,47)(44,49)
(45,48)(46,50)(51,63)(52,65)(53,64)(54,66)(55,71)(56,73)(57,72)(58,74)(59,67)
(60,69)(61,68)(62,70);
s3 := Sym(76)!( 3,55)( 4,56)( 5,58)( 6,57)( 7,51)( 8,52)( 9,54)(10,53)(11,59)
(12,60)(13,62)(14,61)(15,43)(16,44)(17,46)(18,45)(19,39)(20,40)(21,42)(22,41)
(23,47)(24,48)(25,50)(26,49)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)
(34,65)(35,71)(36,72)(37,74)(38,73);
s4 := Sym(76)!( 7,11)( 8,12)( 9,13)(10,14)(19,23)(20,24)(21,25)(22,26)(31,35)
(32,36)(33,37)(34,38)(43,47)(44,48)(45,49)(46,50)(55,59)(56,60)(57,61)(58,62)
(67,71)(68,72)(69,73)(70,74);
s5 := Sym(76)!(75,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s1*s2*s3*s1*s2*s3, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;
to this polytope