include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6,2,2}*1152e
if this polytope has a name.
Group : SmallGroup(1152,157863)
Rank : 6
Schlafli Type : {4,6,6,2,2}
Number of vertices, edges, etc : 4, 12, 18, 6, 2, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,3,6,2,2}*576
3-fold quotients : {4,6,2,2,2}*384c
6-fold quotients : {4,3,2,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)
(65,66)(67,68)(69,70)(71,72);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,25)(14,27)(15,26)(16,28)(17,33)
(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)(38,39)(41,45)(42,47)(43,46)
(44,48)(49,61)(50,63)(51,62)(52,64)(53,69)(54,71)(55,70)(56,72)(57,65)(58,67)
(59,66)(60,68);;
s2 := ( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)(10,58)
(11,60)(12,59)(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,45)
(22,46)(23,48)(24,47)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)(32,63)
(33,69)(34,70)(35,72)(36,71);;
s3 := ( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)(30,34)
(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)(65,69)
(66,70)(67,71)(68,72);;
s4 := (73,74);;
s5 := (75,76);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(76)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)
(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)
(63,64)(65,66)(67,68)(69,70)(71,72);
s1 := Sym(76)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,25)(14,27)(15,26)(16,28)
(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)(38,39)(41,45)(42,47)
(43,46)(44,48)(49,61)(50,63)(51,62)(52,64)(53,69)(54,71)(55,70)(56,72)(57,65)
(58,67)(59,66)(60,68);
s2 := Sym(76)!( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)
(10,58)(11,60)(12,59)(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)
(21,45)(22,46)(23,48)(24,47)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)
(32,63)(33,69)(34,70)(35,72)(36,71);
s3 := Sym(76)!( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)
(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)
(65,69)(66,70)(67,71)(68,72);
s4 := Sym(76)!(73,74);
s5 := Sym(76)!(75,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope