include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,157863)
Rank : 5
Schlafli Type : {2,2,6,6}
Number of vertices, edges, etc : 2, 2, 24, 72, 24
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,6,3}*576
3-fold quotients : {2,2,6,6}*384
4-fold quotients : {2,2,6,6}*288b
6-fold quotients : {2,2,3,6}*192, {2,2,6,3}*192
8-fold quotients : {2,2,6,3}*144
12-fold quotients : {2,2,3,3}*96, {2,2,2,6}*96
24-fold quotients : {2,2,2,3}*48
36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)(10,11)(14,15)(17,29)(18,31)(19,30)(20,32)(21,33)(22,35)(23,34)
(24,36)(25,37)(26,39)(27,38)(28,40)(42,43)(46,47)(50,51)(53,65)(54,67)(55,66)
(56,68)(57,69)(58,71)(59,70)(60,72)(61,73)(62,75)(63,74)(64,76);;
s3 := ( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)(11,28)(12,27)(13,21)(14,22)
(15,24)(16,23)(31,32)(33,37)(34,38)(35,40)(36,39)(41,53)(42,54)(43,56)(44,55)
(45,61)(46,62)(47,64)(48,63)(49,57)(50,58)(51,60)(52,59)(67,68)(69,73)(70,74)
(71,76)(72,75);;
s4 := ( 5,48)( 6,46)( 7,47)( 8,45)( 9,44)(10,42)(11,43)(12,41)(13,52)(14,50)
(15,51)(16,49)(17,72)(18,70)(19,71)(20,69)(21,68)(22,66)(23,67)(24,65)(25,76)
(26,74)(27,75)(28,73)(29,60)(30,58)(31,59)(32,57)(33,56)(34,54)(35,55)(36,53)
(37,64)(38,62)(39,63)(40,61);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!(3,4);
s2 := Sym(76)!( 6, 7)(10,11)(14,15)(17,29)(18,31)(19,30)(20,32)(21,33)(22,35)
(23,34)(24,36)(25,37)(26,39)(27,38)(28,40)(42,43)(46,47)(50,51)(53,65)(54,67)
(55,66)(56,68)(57,69)(58,71)(59,70)(60,72)(61,73)(62,75)(63,74)(64,76);
s3 := Sym(76)!( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)(11,28)(12,27)(13,21)
(14,22)(15,24)(16,23)(31,32)(33,37)(34,38)(35,40)(36,39)(41,53)(42,54)(43,56)
(44,55)(45,61)(46,62)(47,64)(48,63)(49,57)(50,58)(51,60)(52,59)(67,68)(69,73)
(70,74)(71,76)(72,75);
s4 := Sym(76)!( 5,48)( 6,46)( 7,47)( 8,45)( 9,44)(10,42)(11,43)(12,41)(13,52)
(14,50)(15,51)(16,49)(17,72)(18,70)(19,71)(20,69)(21,68)(22,66)(23,67)(24,65)
(25,76)(26,74)(27,75)(28,73)(29,60)(30,58)(31,59)(32,57)(33,56)(34,54)(35,55)
(36,53)(37,64)(38,62)(39,63)(40,61);
poly := sub<Sym(76)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >;
to this polytope