Polytope of Type {3,2,4,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,6,4}*1152d
if this polytope has a name.
Group : SmallGroup(1152,157864)
Rank : 6
Schlafli Type : {3,2,4,6,4}
Number of vertices, edges, etc : 3, 3, 4, 12, 12, 4
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,3,4}*576
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (  4,  5)(  6,  7)(  8,  9)( 10, 11)( 12, 13)( 14, 15)( 16, 17)( 18, 19)
( 20, 21)( 22, 23)( 24, 25)( 26, 27)( 28, 29)( 30, 31)( 32, 33)( 34, 35)
( 36, 37)( 38, 39)( 40, 41)( 42, 43)( 44, 45)( 46, 47)( 48, 49)( 50, 51)
( 52, 53)( 54, 55)( 56, 57)( 58, 59)( 60, 61)( 62, 63)( 64, 65)( 66, 67)
( 68, 69)( 70, 71)( 72, 73)( 74, 75)( 76, 77)( 78, 79)( 80, 81)( 82, 83)
( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 94, 95)( 96, 97)( 98, 99)
(100,101)(102,103)(104,105)(106,107)(108,109)(110,111)(112,113)(114,115)
(116,117)(118,119)(120,121)(122,123)(124,125)(126,127)(128,129)(130,131)
(132,133)(134,135)(136,137)(138,139)(140,141)(142,143)(144,145)(146,147)
(148,149)(150,151)(152,153)(154,155)(156,157)(158,159)(160,161)(162,163)
(164,165)(166,167)(168,169)(170,171)(172,173)(174,175)(176,177)(178,179)
(180,181)(182,183)(184,185)(186,187)(188,189)(190,191)(192,193)(194,195);;
s3 := (  4,116)(  5,119)(  6,118)(  7,117)(  8,124)(  9,127)( 10,126)( 11,125)
( 12,120)( 13,123)( 14,122)( 15,121)( 16,128)( 17,131)( 18,130)( 19,129)
( 20,100)( 21,103)( 22,102)( 23,101)( 24,108)( 25,111)( 26,110)( 27,109)
( 28,104)( 29,107)( 30,106)( 31,105)( 32,112)( 33,115)( 34,114)( 35,113)
( 36,132)( 37,135)( 38,134)( 39,133)( 40,140)( 41,143)( 42,142)( 43,141)
( 44,136)( 45,139)( 46,138)( 47,137)( 48,144)( 49,147)( 50,146)( 51,145)
( 52,164)( 53,167)( 54,166)( 55,165)( 56,172)( 57,175)( 58,174)( 59,173)
( 60,168)( 61,171)( 62,170)( 63,169)( 64,176)( 65,179)( 66,178)( 67,177)
( 68,148)( 69,151)( 70,150)( 71,149)( 72,156)( 73,159)( 74,158)( 75,157)
( 76,152)( 77,155)( 78,154)( 79,153)( 80,160)( 81,163)( 82,162)( 83,161)
( 84,180)( 85,183)( 86,182)( 87,181)( 88,188)( 89,191)( 90,190)( 91,189)
( 92,184)( 93,187)( 94,186)( 95,185)( 96,192)( 97,195)( 98,194)( 99,193);;
s4 := (  4,148)(  5,149)(  6,151)(  7,150)(  8,160)(  9,161)( 10,163)( 11,162)
( 12,156)( 13,157)( 14,159)( 15,158)( 16,152)( 17,153)( 18,155)( 19,154)
( 20,180)( 21,181)( 22,183)( 23,182)( 24,192)( 25,193)( 26,195)( 27,194)
( 28,188)( 29,189)( 30,191)( 31,190)( 32,184)( 33,185)( 34,187)( 35,186)
( 36,164)( 37,165)( 38,167)( 39,166)( 40,176)( 41,177)( 42,179)( 43,178)
( 44,172)( 45,173)( 46,175)( 47,174)( 48,168)( 49,169)( 50,171)( 51,170)
( 52,100)( 53,101)( 54,103)( 55,102)( 56,112)( 57,113)( 58,115)( 59,114)
( 60,108)( 61,109)( 62,111)( 63,110)( 64,104)( 65,105)( 66,107)( 67,106)
( 68,132)( 69,133)( 70,135)( 71,134)( 72,144)( 73,145)( 74,147)( 75,146)
( 76,140)( 77,141)( 78,143)( 79,142)( 80,136)( 81,137)( 82,139)( 83,138)
( 84,116)( 85,117)( 86,119)( 87,118)( 88,128)( 89,129)( 90,131)( 91,130)
( 92,124)( 93,125)( 94,127)( 95,126)( 96,120)( 97,121)( 98,123)( 99,122);;
s5 := (  4, 16)(  5, 17)(  6, 18)(  7, 19)(  8, 12)(  9, 13)( 10, 14)( 11, 15)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 28)( 25, 29)( 26, 30)( 27, 31)
( 36, 48)( 37, 49)( 38, 50)( 39, 51)( 40, 44)( 41, 45)( 42, 46)( 43, 47)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 60)( 57, 61)( 58, 62)( 59, 63)
( 68, 80)( 69, 81)( 70, 82)( 71, 83)( 72, 76)( 73, 77)( 74, 78)( 75, 79)
( 84, 96)( 85, 97)( 86, 98)( 87, 99)( 88, 92)( 89, 93)( 90, 94)( 91, 95)
(100,112)(101,113)(102,114)(103,115)(104,108)(105,109)(106,110)(107,111)
(116,128)(117,129)(118,130)(119,131)(120,124)(121,125)(122,126)(123,127)
(132,144)(133,145)(134,146)(135,147)(136,140)(137,141)(138,142)(139,143)
(148,160)(149,161)(150,162)(151,163)(152,156)(153,157)(154,158)(155,159)
(164,176)(165,177)(166,178)(167,179)(168,172)(169,173)(170,174)(171,175)
(180,192)(181,193)(182,194)(183,195)(184,188)(185,189)(186,190)(187,191);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5*s4*s5, 
s2*s3*s4*s3*s2*s3*s4*s2*s3, s5*s4*s3*s5*s4*s5*s4*s3*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(195)!(2,3);
s1 := Sym(195)!(1,2);
s2 := Sym(195)!(  4,  5)(  6,  7)(  8,  9)( 10, 11)( 12, 13)( 14, 15)( 16, 17)
( 18, 19)( 20, 21)( 22, 23)( 24, 25)( 26, 27)( 28, 29)( 30, 31)( 32, 33)
( 34, 35)( 36, 37)( 38, 39)( 40, 41)( 42, 43)( 44, 45)( 46, 47)( 48, 49)
( 50, 51)( 52, 53)( 54, 55)( 56, 57)( 58, 59)( 60, 61)( 62, 63)( 64, 65)
( 66, 67)( 68, 69)( 70, 71)( 72, 73)( 74, 75)( 76, 77)( 78, 79)( 80, 81)
( 82, 83)( 84, 85)( 86, 87)( 88, 89)( 90, 91)( 92, 93)( 94, 95)( 96, 97)
( 98, 99)(100,101)(102,103)(104,105)(106,107)(108,109)(110,111)(112,113)
(114,115)(116,117)(118,119)(120,121)(122,123)(124,125)(126,127)(128,129)
(130,131)(132,133)(134,135)(136,137)(138,139)(140,141)(142,143)(144,145)
(146,147)(148,149)(150,151)(152,153)(154,155)(156,157)(158,159)(160,161)
(162,163)(164,165)(166,167)(168,169)(170,171)(172,173)(174,175)(176,177)
(178,179)(180,181)(182,183)(184,185)(186,187)(188,189)(190,191)(192,193)
(194,195);
s3 := Sym(195)!(  4,116)(  5,119)(  6,118)(  7,117)(  8,124)(  9,127)( 10,126)
( 11,125)( 12,120)( 13,123)( 14,122)( 15,121)( 16,128)( 17,131)( 18,130)
( 19,129)( 20,100)( 21,103)( 22,102)( 23,101)( 24,108)( 25,111)( 26,110)
( 27,109)( 28,104)( 29,107)( 30,106)( 31,105)( 32,112)( 33,115)( 34,114)
( 35,113)( 36,132)( 37,135)( 38,134)( 39,133)( 40,140)( 41,143)( 42,142)
( 43,141)( 44,136)( 45,139)( 46,138)( 47,137)( 48,144)( 49,147)( 50,146)
( 51,145)( 52,164)( 53,167)( 54,166)( 55,165)( 56,172)( 57,175)( 58,174)
( 59,173)( 60,168)( 61,171)( 62,170)( 63,169)( 64,176)( 65,179)( 66,178)
( 67,177)( 68,148)( 69,151)( 70,150)( 71,149)( 72,156)( 73,159)( 74,158)
( 75,157)( 76,152)( 77,155)( 78,154)( 79,153)( 80,160)( 81,163)( 82,162)
( 83,161)( 84,180)( 85,183)( 86,182)( 87,181)( 88,188)( 89,191)( 90,190)
( 91,189)( 92,184)( 93,187)( 94,186)( 95,185)( 96,192)( 97,195)( 98,194)
( 99,193);
s4 := Sym(195)!(  4,148)(  5,149)(  6,151)(  7,150)(  8,160)(  9,161)( 10,163)
( 11,162)( 12,156)( 13,157)( 14,159)( 15,158)( 16,152)( 17,153)( 18,155)
( 19,154)( 20,180)( 21,181)( 22,183)( 23,182)( 24,192)( 25,193)( 26,195)
( 27,194)( 28,188)( 29,189)( 30,191)( 31,190)( 32,184)( 33,185)( 34,187)
( 35,186)( 36,164)( 37,165)( 38,167)( 39,166)( 40,176)( 41,177)( 42,179)
( 43,178)( 44,172)( 45,173)( 46,175)( 47,174)( 48,168)( 49,169)( 50,171)
( 51,170)( 52,100)( 53,101)( 54,103)( 55,102)( 56,112)( 57,113)( 58,115)
( 59,114)( 60,108)( 61,109)( 62,111)( 63,110)( 64,104)( 65,105)( 66,107)
( 67,106)( 68,132)( 69,133)( 70,135)( 71,134)( 72,144)( 73,145)( 74,147)
( 75,146)( 76,140)( 77,141)( 78,143)( 79,142)( 80,136)( 81,137)( 82,139)
( 83,138)( 84,116)( 85,117)( 86,119)( 87,118)( 88,128)( 89,129)( 90,131)
( 91,130)( 92,124)( 93,125)( 94,127)( 95,126)( 96,120)( 97,121)( 98,123)
( 99,122);
s5 := Sym(195)!(  4, 16)(  5, 17)(  6, 18)(  7, 19)(  8, 12)(  9, 13)( 10, 14)
( 11, 15)( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 28)( 25, 29)( 26, 30)
( 27, 31)( 36, 48)( 37, 49)( 38, 50)( 39, 51)( 40, 44)( 41, 45)( 42, 46)
( 43, 47)( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 60)( 57, 61)( 58, 62)
( 59, 63)( 68, 80)( 69, 81)( 70, 82)( 71, 83)( 72, 76)( 73, 77)( 74, 78)
( 75, 79)( 84, 96)( 85, 97)( 86, 98)( 87, 99)( 88, 92)( 89, 93)( 90, 94)
( 91, 95)(100,112)(101,113)(102,114)(103,115)(104,108)(105,109)(106,110)
(107,111)(116,128)(117,129)(118,130)(119,131)(120,124)(121,125)(122,126)
(123,127)(132,144)(133,145)(134,146)(135,147)(136,140)(137,141)(138,142)
(139,143)(148,160)(149,161)(150,162)(151,163)(152,156)(153,157)(154,158)
(155,159)(164,176)(165,177)(166,178)(167,179)(168,172)(169,173)(170,174)
(171,175)(180,192)(181,193)(182,194)(183,195)(184,188)(185,189)(186,190)
(187,191);
poly := sub<Sym(195)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s2*s3, 
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope