include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,4,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,6,4}*1152g
if this polytope has a name.
Group : SmallGroup(1152,157864)
Rank : 6
Schlafli Type : {3,2,4,6,4}
Number of vertices, edges, etc : 3, 3, 4, 12, 12, 4
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,3,4}*576
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4, 53)( 5, 52)( 6, 55)( 7, 54)( 8, 57)( 9, 56)( 10, 59)( 11, 58)
( 12, 61)( 13, 60)( 14, 63)( 15, 62)( 16, 65)( 17, 64)( 18, 67)( 19, 66)
( 20, 69)( 21, 68)( 22, 71)( 23, 70)( 24, 73)( 25, 72)( 26, 75)( 27, 74)
( 28, 77)( 29, 76)( 30, 79)( 31, 78)( 32, 81)( 33, 80)( 34, 83)( 35, 82)
( 36, 85)( 37, 84)( 38, 87)( 39, 86)( 40, 89)( 41, 88)( 42, 91)( 43, 90)
( 44, 93)( 45, 92)( 46, 95)( 47, 94)( 48, 97)( 49, 96)( 50, 99)( 51, 98)
(100,149)(101,148)(102,151)(103,150)(104,153)(105,152)(106,155)(107,154)
(108,157)(109,156)(110,159)(111,158)(112,161)(113,160)(114,163)(115,162)
(116,165)(117,164)(118,167)(119,166)(120,169)(121,168)(122,171)(123,170)
(124,173)(125,172)(126,175)(127,174)(128,177)(129,176)(130,179)(131,178)
(132,181)(133,180)(134,183)(135,182)(136,185)(137,184)(138,187)(139,186)
(140,189)(141,188)(142,191)(143,190)(144,193)(145,192)(146,195)(147,194);;
s3 := ( 4,116)( 5,119)( 6,118)( 7,117)( 8,124)( 9,127)( 10,126)( 11,125)
( 12,120)( 13,123)( 14,122)( 15,121)( 16,128)( 17,131)( 18,130)( 19,129)
( 20,100)( 21,103)( 22,102)( 23,101)( 24,108)( 25,111)( 26,110)( 27,109)
( 28,104)( 29,107)( 30,106)( 31,105)( 32,112)( 33,115)( 34,114)( 35,113)
( 36,132)( 37,135)( 38,134)( 39,133)( 40,140)( 41,143)( 42,142)( 43,141)
( 44,136)( 45,139)( 46,138)( 47,137)( 48,144)( 49,147)( 50,146)( 51,145)
( 52,164)( 53,167)( 54,166)( 55,165)( 56,172)( 57,175)( 58,174)( 59,173)
( 60,168)( 61,171)( 62,170)( 63,169)( 64,176)( 65,179)( 66,178)( 67,177)
( 68,148)( 69,151)( 70,150)( 71,149)( 72,156)( 73,159)( 74,158)( 75,157)
( 76,152)( 77,155)( 78,154)( 79,153)( 80,160)( 81,163)( 82,162)( 83,161)
( 84,180)( 85,183)( 86,182)( 87,181)( 88,188)( 89,191)( 90,190)( 91,189)
( 92,184)( 93,187)( 94,186)( 95,185)( 96,192)( 97,195)( 98,194)( 99,193);;
s4 := ( 4,148)( 5,149)( 6,151)( 7,150)( 8,160)( 9,161)( 10,163)( 11,162)
( 12,156)( 13,157)( 14,159)( 15,158)( 16,152)( 17,153)( 18,155)( 19,154)
( 20,180)( 21,181)( 22,183)( 23,182)( 24,192)( 25,193)( 26,195)( 27,194)
( 28,188)( 29,189)( 30,191)( 31,190)( 32,184)( 33,185)( 34,187)( 35,186)
( 36,164)( 37,165)( 38,167)( 39,166)( 40,176)( 41,177)( 42,179)( 43,178)
( 44,172)( 45,173)( 46,175)( 47,174)( 48,168)( 49,169)( 50,171)( 51,170)
( 52,100)( 53,101)( 54,103)( 55,102)( 56,112)( 57,113)( 58,115)( 59,114)
( 60,108)( 61,109)( 62,111)( 63,110)( 64,104)( 65,105)( 66,107)( 67,106)
( 68,132)( 69,133)( 70,135)( 71,134)( 72,144)( 73,145)( 74,147)( 75,146)
( 76,140)( 77,141)( 78,143)( 79,142)( 80,136)( 81,137)( 82,139)( 83,138)
( 84,116)( 85,117)( 86,119)( 87,118)( 88,128)( 89,129)( 90,131)( 91,130)
( 92,124)( 93,125)( 94,127)( 95,126)( 96,120)( 97,121)( 98,123)( 99,122);;
s5 := ( 4, 64)( 5, 65)( 6, 66)( 7, 67)( 8, 60)( 9, 61)( 10, 62)( 11, 63)
( 12, 56)( 13, 57)( 14, 58)( 15, 59)( 16, 52)( 17, 53)( 18, 54)( 19, 55)
( 20, 80)( 21, 81)( 22, 82)( 23, 83)( 24, 76)( 25, 77)( 26, 78)( 27, 79)
( 28, 72)( 29, 73)( 30, 74)( 31, 75)( 32, 68)( 33, 69)( 34, 70)( 35, 71)
( 36, 96)( 37, 97)( 38, 98)( 39, 99)( 40, 92)( 41, 93)( 42, 94)( 43, 95)
( 44, 88)( 45, 89)( 46, 90)( 47, 91)( 48, 84)( 49, 85)( 50, 86)( 51, 87)
(100,160)(101,161)(102,162)(103,163)(104,156)(105,157)(106,158)(107,159)
(108,152)(109,153)(110,154)(111,155)(112,148)(113,149)(114,150)(115,151)
(116,176)(117,177)(118,178)(119,179)(120,172)(121,173)(122,174)(123,175)
(124,168)(125,169)(126,170)(127,171)(128,164)(129,165)(130,166)(131,167)
(132,192)(133,193)(134,194)(135,195)(136,188)(137,189)(138,190)(139,191)
(140,184)(141,185)(142,186)(143,187)(144,180)(145,181)(146,182)(147,183);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5*s4*s5,
s2*s3*s4*s2*s3*s4*s2*s3*s4, s3*s4*s5*s3*s4*s5*s3*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(195)!(2,3);
s1 := Sym(195)!(1,2);
s2 := Sym(195)!( 4, 53)( 5, 52)( 6, 55)( 7, 54)( 8, 57)( 9, 56)( 10, 59)
( 11, 58)( 12, 61)( 13, 60)( 14, 63)( 15, 62)( 16, 65)( 17, 64)( 18, 67)
( 19, 66)( 20, 69)( 21, 68)( 22, 71)( 23, 70)( 24, 73)( 25, 72)( 26, 75)
( 27, 74)( 28, 77)( 29, 76)( 30, 79)( 31, 78)( 32, 81)( 33, 80)( 34, 83)
( 35, 82)( 36, 85)( 37, 84)( 38, 87)( 39, 86)( 40, 89)( 41, 88)( 42, 91)
( 43, 90)( 44, 93)( 45, 92)( 46, 95)( 47, 94)( 48, 97)( 49, 96)( 50, 99)
( 51, 98)(100,149)(101,148)(102,151)(103,150)(104,153)(105,152)(106,155)
(107,154)(108,157)(109,156)(110,159)(111,158)(112,161)(113,160)(114,163)
(115,162)(116,165)(117,164)(118,167)(119,166)(120,169)(121,168)(122,171)
(123,170)(124,173)(125,172)(126,175)(127,174)(128,177)(129,176)(130,179)
(131,178)(132,181)(133,180)(134,183)(135,182)(136,185)(137,184)(138,187)
(139,186)(140,189)(141,188)(142,191)(143,190)(144,193)(145,192)(146,195)
(147,194);
s3 := Sym(195)!( 4,116)( 5,119)( 6,118)( 7,117)( 8,124)( 9,127)( 10,126)
( 11,125)( 12,120)( 13,123)( 14,122)( 15,121)( 16,128)( 17,131)( 18,130)
( 19,129)( 20,100)( 21,103)( 22,102)( 23,101)( 24,108)( 25,111)( 26,110)
( 27,109)( 28,104)( 29,107)( 30,106)( 31,105)( 32,112)( 33,115)( 34,114)
( 35,113)( 36,132)( 37,135)( 38,134)( 39,133)( 40,140)( 41,143)( 42,142)
( 43,141)( 44,136)( 45,139)( 46,138)( 47,137)( 48,144)( 49,147)( 50,146)
( 51,145)( 52,164)( 53,167)( 54,166)( 55,165)( 56,172)( 57,175)( 58,174)
( 59,173)( 60,168)( 61,171)( 62,170)( 63,169)( 64,176)( 65,179)( 66,178)
( 67,177)( 68,148)( 69,151)( 70,150)( 71,149)( 72,156)( 73,159)( 74,158)
( 75,157)( 76,152)( 77,155)( 78,154)( 79,153)( 80,160)( 81,163)( 82,162)
( 83,161)( 84,180)( 85,183)( 86,182)( 87,181)( 88,188)( 89,191)( 90,190)
( 91,189)( 92,184)( 93,187)( 94,186)( 95,185)( 96,192)( 97,195)( 98,194)
( 99,193);
s4 := Sym(195)!( 4,148)( 5,149)( 6,151)( 7,150)( 8,160)( 9,161)( 10,163)
( 11,162)( 12,156)( 13,157)( 14,159)( 15,158)( 16,152)( 17,153)( 18,155)
( 19,154)( 20,180)( 21,181)( 22,183)( 23,182)( 24,192)( 25,193)( 26,195)
( 27,194)( 28,188)( 29,189)( 30,191)( 31,190)( 32,184)( 33,185)( 34,187)
( 35,186)( 36,164)( 37,165)( 38,167)( 39,166)( 40,176)( 41,177)( 42,179)
( 43,178)( 44,172)( 45,173)( 46,175)( 47,174)( 48,168)( 49,169)( 50,171)
( 51,170)( 52,100)( 53,101)( 54,103)( 55,102)( 56,112)( 57,113)( 58,115)
( 59,114)( 60,108)( 61,109)( 62,111)( 63,110)( 64,104)( 65,105)( 66,107)
( 67,106)( 68,132)( 69,133)( 70,135)( 71,134)( 72,144)( 73,145)( 74,147)
( 75,146)( 76,140)( 77,141)( 78,143)( 79,142)( 80,136)( 81,137)( 82,139)
( 83,138)( 84,116)( 85,117)( 86,119)( 87,118)( 88,128)( 89,129)( 90,131)
( 91,130)( 92,124)( 93,125)( 94,127)( 95,126)( 96,120)( 97,121)( 98,123)
( 99,122);
s5 := Sym(195)!( 4, 64)( 5, 65)( 6, 66)( 7, 67)( 8, 60)( 9, 61)( 10, 62)
( 11, 63)( 12, 56)( 13, 57)( 14, 58)( 15, 59)( 16, 52)( 17, 53)( 18, 54)
( 19, 55)( 20, 80)( 21, 81)( 22, 82)( 23, 83)( 24, 76)( 25, 77)( 26, 78)
( 27, 79)( 28, 72)( 29, 73)( 30, 74)( 31, 75)( 32, 68)( 33, 69)( 34, 70)
( 35, 71)( 36, 96)( 37, 97)( 38, 98)( 39, 99)( 40, 92)( 41, 93)( 42, 94)
( 43, 95)( 44, 88)( 45, 89)( 46, 90)( 47, 91)( 48, 84)( 49, 85)( 50, 86)
( 51, 87)(100,160)(101,161)(102,162)(103,163)(104,156)(105,157)(106,158)
(107,159)(108,152)(109,153)(110,154)(111,155)(112,148)(113,149)(114,150)
(115,151)(116,176)(117,177)(118,178)(119,179)(120,172)(121,173)(122,174)
(123,175)(124,168)(125,169)(126,170)(127,171)(128,164)(129,165)(130,166)
(131,167)(132,192)(133,193)(134,194)(135,195)(136,188)(137,189)(138,190)
(139,191)(140,184)(141,185)(142,186)(143,187)(144,180)(145,181)(146,182)
(147,183);
poly := sub<Sym(195)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s5*s4*s5*s4*s5*s4*s5, s2*s3*s4*s2*s3*s4*s2*s3*s4,
s3*s4*s5*s3*s4*s5*s3*s4*s5 >;
to this polytope