include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,12,2}*1152f
if this polytope has a name.
Group : SmallGroup(1152,157864)
Rank : 5
Schlafli Type : {4,6,12,2}
Number of vertices, edges, etc : 4, 12, 36, 12, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,6,4,2}*384e
6-fold quotients : {4,3,4,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)(18,26)
(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)
(38,46)(39,47)(40,48);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(18,19)(21,25)(22,27)(23,26)
(24,28)(30,31)(34,35)(37,41)(38,43)(39,42)(40,44)(46,47);;
s2 := ( 3, 4)( 5,13)( 6,14)( 7,16)( 8,15)(11,12)(17,33)(18,34)(19,36)(20,35)
(21,45)(22,46)(23,48)(24,47)(25,41)(26,42)(27,44)(28,43)(29,37)(30,38)(31,40)
(32,39);;
s3 := ( 1,20)( 2,19)( 3,18)( 4,17)( 5,24)( 6,23)( 7,22)( 8,21)( 9,28)(10,27)
(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)(33,36)(34,35)(37,40)(38,39)(41,44)
(42,43)(45,48)(46,47);;
s4 := (49,50);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s3*s1*s2*s3*s1*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)
(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)
(37,45)(38,46)(39,47)(40,48);
s1 := Sym(50)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(18,19)(21,25)(22,27)
(23,26)(24,28)(30,31)(34,35)(37,41)(38,43)(39,42)(40,44)(46,47);
s2 := Sym(50)!( 3, 4)( 5,13)( 6,14)( 7,16)( 8,15)(11,12)(17,33)(18,34)(19,36)
(20,35)(21,45)(22,46)(23,48)(24,47)(25,41)(26,42)(27,44)(28,43)(29,37)(30,38)
(31,40)(32,39);
s3 := Sym(50)!( 1,20)( 2,19)( 3,18)( 4,17)( 5,24)( 6,23)( 7,22)( 8,21)( 9,28)
(10,27)(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)(33,36)(34,35)(37,40)(38,39)
(41,44)(42,43)(45,48)(46,47);
s4 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >;
to this polytope