Polytope of Type {2,4,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6,12}*1152f
if this polytope has a name.
Group : SmallGroup(1152,157864)
Rank : 5
Schlafli Type : {2,4,6,12}
Number of vertices, edges, etc : 2, 4, 12, 36, 12
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,4,6,4}*384e
   6-fold quotients : {2,4,3,4}*192
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(19,27)(20,28)
(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(35,43)(36,44)(37,45)(38,46)(39,47)
(40,48)(41,49)(42,50);;
s2 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(20,21)(23,27)(24,29)(25,28)
(26,30)(32,33)(36,37)(39,43)(40,45)(41,44)(42,46)(48,49);;
s3 := ( 5, 6)( 7,15)( 8,16)( 9,18)(10,17)(13,14)(19,35)(20,36)(21,38)(22,37)
(23,47)(24,48)(25,50)(26,49)(27,43)(28,44)(29,46)(30,45)(31,39)(32,40)(33,42)
(34,41);;
s4 := ( 3,22)( 4,21)( 5,20)( 6,19)( 7,26)( 8,25)( 9,24)(10,23)(11,30)(12,29)
(13,28)(14,27)(15,34)(16,33)(17,32)(18,31)(35,38)(36,37)(39,42)(40,41)(43,46)
(44,45)(47,50)(48,49);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s4*s2*s3*s4*s2*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3*s2*s3*s4*s3*s2*s3*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(19,27)
(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(35,43)(36,44)(37,45)(38,46)
(39,47)(40,48)(41,49)(42,50);
s2 := Sym(50)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(20,21)(23,27)(24,29)
(25,28)(26,30)(32,33)(36,37)(39,43)(40,45)(41,44)(42,46)(48,49);
s3 := Sym(50)!( 5, 6)( 7,15)( 8,16)( 9,18)(10,17)(13,14)(19,35)(20,36)(21,38)
(22,37)(23,47)(24,48)(25,50)(26,49)(27,43)(28,44)(29,46)(30,45)(31,39)(32,40)
(33,42)(34,41);
s4 := Sym(50)!( 3,22)( 4,21)( 5,20)( 6,19)( 7,26)( 8,25)( 9,24)(10,23)(11,30)
(12,29)(13,28)(14,27)(15,34)(16,33)(17,32)(18,31)(35,38)(36,37)(39,42)(40,41)
(43,46)(44,45)(47,50)(48,49);
poly := sub<Sym(50)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s4*s2*s3*s4*s2*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3*s2*s3*s4*s3*s2*s3*s4*s3 >; 
 

to this polytope