include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,48}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,48}*1152b
if this polytope has a name.
Group : SmallGroup(1152,32300)
Rank : 3
Schlafli Type : {4,48}
Number of vertices, edges, etc : 12, 288, 144
Order of s0s1s2 : 16
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,24}*576a
4-fold quotients : {4,12}*288
8-fold quotients : {4,6}*144
9-fold quotients : {4,16}*128b
16-fold quotients : {4,6}*72
18-fold quotients : {4,8}*64a
36-fold quotients : {4,4}*32, {2,8}*32
72-fold quotients : {2,4}*16, {4,2}*16
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,145)( 2,147)( 3,146)( 4,149)( 5,148)( 6,150)( 7,153)( 8,152)
( 9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)( 16,162)
( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)( 24,168)
( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)( 32,175)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)( 40,185)
( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)( 48,191)
( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)( 56,201)
( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)( 64,208)
( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)( 72,214)
( 73,226)( 74,228)( 75,227)( 76,230)( 77,229)( 78,231)( 79,234)( 80,233)
( 81,232)( 82,217)( 83,219)( 84,218)( 85,221)( 86,220)( 87,222)( 88,225)
( 89,224)( 90,223)( 91,244)( 92,246)( 93,245)( 94,248)( 95,247)( 96,249)
( 97,252)( 98,251)( 99,250)(100,235)(101,237)(102,236)(103,239)(104,238)
(105,240)(106,243)(107,242)(108,241)(109,262)(110,264)(111,263)(112,266)
(113,265)(114,267)(115,270)(116,269)(117,268)(118,253)(119,255)(120,254)
(121,257)(122,256)(123,258)(124,261)(125,260)(126,259)(127,280)(128,282)
(129,281)(130,284)(131,283)(132,285)(133,288)(134,287)(135,286)(136,271)
(137,273)(138,272)(139,275)(140,274)(141,276)(142,279)(143,278)(144,277)
(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)(296,440)
(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)(304,450)
(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)(312,456)
(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)(320,463)
(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)(328,473)
(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)(336,479)
(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)(344,489)
(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)(352,496)
(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)(360,502)
(361,514)(362,516)(363,515)(364,518)(365,517)(366,519)(367,522)(368,521)
(369,520)(370,505)(371,507)(372,506)(373,509)(374,508)(375,510)(376,513)
(377,512)(378,511)(379,532)(380,534)(381,533)(382,536)(383,535)(384,537)
(385,540)(386,539)(387,538)(388,523)(389,525)(390,524)(391,527)(392,526)
(393,528)(394,531)(395,530)(396,529)(397,550)(398,552)(399,551)(400,554)
(401,553)(402,555)(403,558)(404,557)(405,556)(406,541)(407,543)(408,542)
(409,545)(410,544)(411,546)(412,549)(413,548)(414,547)(415,568)(416,570)
(417,569)(418,572)(419,571)(420,573)(421,576)(422,575)(423,574)(424,559)
(425,561)(426,560)(427,563)(428,562)(429,564)(430,567)(431,566)(432,565);;
s1 := ( 2, 6)( 3, 8)( 5, 9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)( 20, 33)
( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)( 38, 42)
( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)( 74, 96)
( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)( 82,100)
( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)( 90,104)
(109,127)(110,132)(111,134)(112,130)(113,135)(114,128)(115,133)(116,129)
(117,131)(118,136)(119,141)(120,143)(121,139)(122,144)(123,137)(124,142)
(125,138)(126,140)(145,181)(146,186)(147,188)(148,184)(149,189)(150,182)
(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)(158,198)
(159,191)(160,196)(161,192)(162,194)(163,208)(164,213)(165,215)(166,211)
(167,216)(168,209)(169,214)(170,210)(171,212)(172,199)(173,204)(174,206)
(175,202)(176,207)(177,200)(178,205)(179,201)(180,203)(217,271)(218,276)
(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)(226,280)
(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)(234,284)
(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)(242,255)
(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)(250,268)
(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)
(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)
(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)(310,391)
(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)(318,386)
(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,397)(326,402)
(327,404)(328,400)(329,405)(330,398)(331,403)(332,399)(333,401)(334,406)
(335,411)(336,413)(337,409)(338,414)(339,407)(340,412)(341,408)(342,410)
(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)(350,426)
(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)(358,421)
(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)(438,551)
(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)(446,549)
(447,542)(448,547)(449,543)(450,545)(451,559)(452,564)(453,566)(454,562)
(455,567)(456,560)(457,565)(458,561)(459,563)(460,568)(461,573)(462,575)
(463,571)(464,576)(465,569)(466,574)(467,570)(468,572)(469,514)(470,519)
(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)(478,505)
(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)(486,509)
(487,523)(488,528)(489,530)(490,526)(491,531)(492,524)(493,529)(494,525)
(495,527)(496,532)(497,537)(498,539)(499,535)(500,540)(501,533)(502,538)
(503,534)(504,536);;
s2 := ( 1,296)( 2,295)( 3,297)( 4,293)( 5,292)( 6,294)( 7,290)( 8,289)
( 9,291)( 10,305)( 11,304)( 12,306)( 13,302)( 14,301)( 15,303)( 16,299)
( 17,298)( 18,300)( 19,323)( 20,322)( 21,324)( 22,320)( 23,319)( 24,321)
( 25,317)( 26,316)( 27,318)( 28,314)( 29,313)( 30,315)( 31,311)( 32,310)
( 33,312)( 34,308)( 35,307)( 36,309)( 37,341)( 38,340)( 39,342)( 40,338)
( 41,337)( 42,339)( 43,335)( 44,334)( 45,336)( 46,332)( 47,331)( 48,333)
( 49,329)( 50,328)( 51,330)( 52,326)( 53,325)( 54,327)( 55,350)( 56,349)
( 57,351)( 58,347)( 59,346)( 60,348)( 61,344)( 62,343)( 63,345)( 64,359)
( 65,358)( 66,360)( 67,356)( 68,355)( 69,357)( 70,353)( 71,352)( 72,354)
( 73,386)( 74,385)( 75,387)( 76,383)( 77,382)( 78,384)( 79,380)( 80,379)
( 81,381)( 82,395)( 83,394)( 84,396)( 85,392)( 86,391)( 87,393)( 88,389)
( 89,388)( 90,390)( 91,368)( 92,367)( 93,369)( 94,365)( 95,364)( 96,366)
( 97,362)( 98,361)( 99,363)(100,377)(101,376)(102,378)(103,374)(104,373)
(105,375)(106,371)(107,370)(108,372)(109,431)(110,430)(111,432)(112,428)
(113,427)(114,429)(115,425)(116,424)(117,426)(118,422)(119,421)(120,423)
(121,419)(122,418)(123,420)(124,416)(125,415)(126,417)(127,413)(128,412)
(129,414)(130,410)(131,409)(132,411)(133,407)(134,406)(135,408)(136,404)
(137,403)(138,405)(139,401)(140,400)(141,402)(142,398)(143,397)(144,399)
(145,440)(146,439)(147,441)(148,437)(149,436)(150,438)(151,434)(152,433)
(153,435)(154,449)(155,448)(156,450)(157,446)(158,445)(159,447)(160,443)
(161,442)(162,444)(163,467)(164,466)(165,468)(166,464)(167,463)(168,465)
(169,461)(170,460)(171,462)(172,458)(173,457)(174,459)(175,455)(176,454)
(177,456)(178,452)(179,451)(180,453)(181,485)(182,484)(183,486)(184,482)
(185,481)(186,483)(187,479)(188,478)(189,480)(190,476)(191,475)(192,477)
(193,473)(194,472)(195,474)(196,470)(197,469)(198,471)(199,494)(200,493)
(201,495)(202,491)(203,490)(204,492)(205,488)(206,487)(207,489)(208,503)
(209,502)(210,504)(211,500)(212,499)(213,501)(214,497)(215,496)(216,498)
(217,530)(218,529)(219,531)(220,527)(221,526)(222,528)(223,524)(224,523)
(225,525)(226,539)(227,538)(228,540)(229,536)(230,535)(231,537)(232,533)
(233,532)(234,534)(235,512)(236,511)(237,513)(238,509)(239,508)(240,510)
(241,506)(242,505)(243,507)(244,521)(245,520)(246,522)(247,518)(248,517)
(249,519)(250,515)(251,514)(252,516)(253,575)(254,574)(255,576)(256,572)
(257,571)(258,573)(259,569)(260,568)(261,570)(262,566)(263,565)(264,567)
(265,563)(266,562)(267,564)(268,560)(269,559)(270,561)(271,557)(272,556)
(273,558)(274,554)(275,553)(276,555)(277,551)(278,550)(279,552)(280,548)
(281,547)(282,549)(283,545)(284,544)(285,546)(286,542)(287,541)(288,543);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,145)( 2,147)( 3,146)( 4,149)( 5,148)( 6,150)( 7,153)
( 8,152)( 9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)
( 16,162)( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)
( 24,168)( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)
( 32,175)( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)
( 40,185)( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)
( 48,191)( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)
( 56,201)( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)
( 64,208)( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)
( 72,214)( 73,226)( 74,228)( 75,227)( 76,230)( 77,229)( 78,231)( 79,234)
( 80,233)( 81,232)( 82,217)( 83,219)( 84,218)( 85,221)( 86,220)( 87,222)
( 88,225)( 89,224)( 90,223)( 91,244)( 92,246)( 93,245)( 94,248)( 95,247)
( 96,249)( 97,252)( 98,251)( 99,250)(100,235)(101,237)(102,236)(103,239)
(104,238)(105,240)(106,243)(107,242)(108,241)(109,262)(110,264)(111,263)
(112,266)(113,265)(114,267)(115,270)(116,269)(117,268)(118,253)(119,255)
(120,254)(121,257)(122,256)(123,258)(124,261)(125,260)(126,259)(127,280)
(128,282)(129,281)(130,284)(131,283)(132,285)(133,288)(134,287)(135,286)
(136,271)(137,273)(138,272)(139,275)(140,274)(141,276)(142,279)(143,278)
(144,277)(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)
(296,440)(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)
(304,450)(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)
(312,456)(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)
(320,463)(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)
(328,473)(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)
(336,479)(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)
(344,489)(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)
(352,496)(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)
(360,502)(361,514)(362,516)(363,515)(364,518)(365,517)(366,519)(367,522)
(368,521)(369,520)(370,505)(371,507)(372,506)(373,509)(374,508)(375,510)
(376,513)(377,512)(378,511)(379,532)(380,534)(381,533)(382,536)(383,535)
(384,537)(385,540)(386,539)(387,538)(388,523)(389,525)(390,524)(391,527)
(392,526)(393,528)(394,531)(395,530)(396,529)(397,550)(398,552)(399,551)
(400,554)(401,553)(402,555)(403,558)(404,557)(405,556)(406,541)(407,543)
(408,542)(409,545)(410,544)(411,546)(412,549)(413,548)(414,547)(415,568)
(416,570)(417,569)(418,572)(419,571)(420,573)(421,576)(422,575)(423,574)
(424,559)(425,561)(426,560)(427,563)(428,562)(429,564)(430,567)(431,566)
(432,565);
s1 := Sym(576)!( 2, 6)( 3, 8)( 5, 9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)
( 20, 33)( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)
( 38, 42)( 39, 44)( 41, 45)( 47, 51)( 48, 53)( 50, 54)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 73, 91)
( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)( 81, 95)
( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)( 89,102)
( 90,104)(109,127)(110,132)(111,134)(112,130)(113,135)(114,128)(115,133)
(116,129)(117,131)(118,136)(119,141)(120,143)(121,139)(122,144)(123,137)
(124,142)(125,138)(126,140)(145,181)(146,186)(147,188)(148,184)(149,189)
(150,182)(151,187)(152,183)(153,185)(154,190)(155,195)(156,197)(157,193)
(158,198)(159,191)(160,196)(161,192)(162,194)(163,208)(164,213)(165,215)
(166,211)(167,216)(168,209)(169,214)(170,210)(171,212)(172,199)(173,204)
(174,206)(175,202)(176,207)(177,200)(178,205)(179,201)(180,203)(217,271)
(218,276)(219,278)(220,274)(221,279)(222,272)(223,277)(224,273)(225,275)
(226,280)(227,285)(228,287)(229,283)(230,288)(231,281)(232,286)(233,282)
(234,284)(235,253)(236,258)(237,260)(238,256)(239,261)(240,254)(241,259)
(242,255)(243,257)(244,262)(245,267)(246,269)(247,265)(248,270)(249,263)
(250,268)(251,264)(252,266)(289,361)(290,366)(291,368)(292,364)(293,369)
(294,362)(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)
(302,378)(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)
(310,391)(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)
(318,386)(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,397)
(326,402)(327,404)(328,400)(329,405)(330,398)(331,403)(332,399)(333,401)
(334,406)(335,411)(336,413)(337,409)(338,414)(339,407)(340,412)(341,408)
(342,410)(343,424)(344,429)(345,431)(346,427)(347,432)(348,425)(349,430)
(350,426)(351,428)(352,415)(353,420)(354,422)(355,418)(356,423)(357,416)
(358,421)(359,417)(360,419)(433,550)(434,555)(435,557)(436,553)(437,558)
(438,551)(439,556)(440,552)(441,554)(442,541)(443,546)(444,548)(445,544)
(446,549)(447,542)(448,547)(449,543)(450,545)(451,559)(452,564)(453,566)
(454,562)(455,567)(456,560)(457,565)(458,561)(459,563)(460,568)(461,573)
(462,575)(463,571)(464,576)(465,569)(466,574)(467,570)(468,572)(469,514)
(470,519)(471,521)(472,517)(473,522)(474,515)(475,520)(476,516)(477,518)
(478,505)(479,510)(480,512)(481,508)(482,513)(483,506)(484,511)(485,507)
(486,509)(487,523)(488,528)(489,530)(490,526)(491,531)(492,524)(493,529)
(494,525)(495,527)(496,532)(497,537)(498,539)(499,535)(500,540)(501,533)
(502,538)(503,534)(504,536);
s2 := Sym(576)!( 1,296)( 2,295)( 3,297)( 4,293)( 5,292)( 6,294)( 7,290)
( 8,289)( 9,291)( 10,305)( 11,304)( 12,306)( 13,302)( 14,301)( 15,303)
( 16,299)( 17,298)( 18,300)( 19,323)( 20,322)( 21,324)( 22,320)( 23,319)
( 24,321)( 25,317)( 26,316)( 27,318)( 28,314)( 29,313)( 30,315)( 31,311)
( 32,310)( 33,312)( 34,308)( 35,307)( 36,309)( 37,341)( 38,340)( 39,342)
( 40,338)( 41,337)( 42,339)( 43,335)( 44,334)( 45,336)( 46,332)( 47,331)
( 48,333)( 49,329)( 50,328)( 51,330)( 52,326)( 53,325)( 54,327)( 55,350)
( 56,349)( 57,351)( 58,347)( 59,346)( 60,348)( 61,344)( 62,343)( 63,345)
( 64,359)( 65,358)( 66,360)( 67,356)( 68,355)( 69,357)( 70,353)( 71,352)
( 72,354)( 73,386)( 74,385)( 75,387)( 76,383)( 77,382)( 78,384)( 79,380)
( 80,379)( 81,381)( 82,395)( 83,394)( 84,396)( 85,392)( 86,391)( 87,393)
( 88,389)( 89,388)( 90,390)( 91,368)( 92,367)( 93,369)( 94,365)( 95,364)
( 96,366)( 97,362)( 98,361)( 99,363)(100,377)(101,376)(102,378)(103,374)
(104,373)(105,375)(106,371)(107,370)(108,372)(109,431)(110,430)(111,432)
(112,428)(113,427)(114,429)(115,425)(116,424)(117,426)(118,422)(119,421)
(120,423)(121,419)(122,418)(123,420)(124,416)(125,415)(126,417)(127,413)
(128,412)(129,414)(130,410)(131,409)(132,411)(133,407)(134,406)(135,408)
(136,404)(137,403)(138,405)(139,401)(140,400)(141,402)(142,398)(143,397)
(144,399)(145,440)(146,439)(147,441)(148,437)(149,436)(150,438)(151,434)
(152,433)(153,435)(154,449)(155,448)(156,450)(157,446)(158,445)(159,447)
(160,443)(161,442)(162,444)(163,467)(164,466)(165,468)(166,464)(167,463)
(168,465)(169,461)(170,460)(171,462)(172,458)(173,457)(174,459)(175,455)
(176,454)(177,456)(178,452)(179,451)(180,453)(181,485)(182,484)(183,486)
(184,482)(185,481)(186,483)(187,479)(188,478)(189,480)(190,476)(191,475)
(192,477)(193,473)(194,472)(195,474)(196,470)(197,469)(198,471)(199,494)
(200,493)(201,495)(202,491)(203,490)(204,492)(205,488)(206,487)(207,489)
(208,503)(209,502)(210,504)(211,500)(212,499)(213,501)(214,497)(215,496)
(216,498)(217,530)(218,529)(219,531)(220,527)(221,526)(222,528)(223,524)
(224,523)(225,525)(226,539)(227,538)(228,540)(229,536)(230,535)(231,537)
(232,533)(233,532)(234,534)(235,512)(236,511)(237,513)(238,509)(239,508)
(240,510)(241,506)(242,505)(243,507)(244,521)(245,520)(246,522)(247,518)
(248,517)(249,519)(250,515)(251,514)(252,516)(253,575)(254,574)(255,576)
(256,572)(257,571)(258,573)(259,569)(260,568)(261,570)(262,566)(263,565)
(264,567)(265,563)(266,562)(267,564)(268,560)(269,559)(270,561)(271,557)
(272,556)(273,558)(274,554)(275,553)(276,555)(277,551)(278,550)(279,552)
(280,548)(281,547)(282,549)(283,545)(284,544)(285,546)(286,542)(287,541)
(288,543);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 >;
References : None.
to this polytope