include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12}*1152b
if this polytope has a name.
Group : SmallGroup(1152,32543)
Rank : 3
Schlafli Type : {12,12}
Number of vertices, edges, etc : 48, 288, 48
Order of s0s1s2 : 24
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,12}*576b
3-fold quotients : {4,12}*384a
4-fold quotients : {12,12}*288b
6-fold quotients : {4,12}*192a
8-fold quotients : {6,12}*144b, {12,6}*144c
9-fold quotients : {4,4}*128
12-fold quotients : {4,12}*96a
16-fold quotients : {6,6}*72b
18-fold quotients : {4,4}*64
24-fold quotients : {2,12}*48, {4,6}*48a
32-fold quotients : {6,3}*36
36-fold quotients : {4,4}*32
48-fold quotients : {2,6}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 73)( 2, 78)( 3, 80)( 4, 76)( 5, 81)( 6, 74)( 7, 79)( 8, 75)
( 9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)( 16, 88)
( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)( 24, 92)
( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)( 32,108)
( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)( 40,112)
( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)( 48,125)
( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)( 56,132)
( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)( 64,136)
( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)( 72,140);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)( 26, 31)
( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73,110)( 74,109)( 75,111)( 76,116)( 77,115)( 78,117)
( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)( 84,120)( 85,125)( 86,124)
( 87,126)( 88,122)( 89,121)( 90,123)( 91,137)( 92,136)( 93,138)( 94,143)
( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,128)(101,127)(102,129)
(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);;
s2 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 37, 64)( 38, 66)( 39, 65)( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)
( 45, 68)( 46, 55)( 47, 57)( 48, 56)( 49, 61)( 50, 63)( 51, 62)( 52, 58)
( 53, 60)( 54, 59)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)
( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)
(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)(113,144)(114,143)
(115,139)(116,141)(117,140)(118,127)(119,129)(120,128)(121,133)(122,135)
(123,134)(124,130)(125,132)(126,131);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 1, 73)( 2, 78)( 3, 80)( 4, 76)( 5, 81)( 6, 74)( 7, 79)
( 8, 75)( 9, 77)( 10, 82)( 11, 87)( 12, 89)( 13, 85)( 14, 90)( 15, 83)
( 16, 88)( 17, 84)( 18, 86)( 19, 91)( 20, 96)( 21, 98)( 22, 94)( 23, 99)
( 24, 92)( 25, 97)( 26, 93)( 27, 95)( 28,100)( 29,105)( 30,107)( 31,103)
( 32,108)( 33,101)( 34,106)( 35,102)( 36,104)( 37,109)( 38,114)( 39,116)
( 40,112)( 41,117)( 42,110)( 43,115)( 44,111)( 45,113)( 46,118)( 47,123)
( 48,125)( 49,121)( 50,126)( 51,119)( 52,124)( 53,120)( 54,122)( 55,127)
( 56,132)( 57,134)( 58,130)( 59,135)( 60,128)( 61,133)( 62,129)( 63,131)
( 64,136)( 65,141)( 66,143)( 67,139)( 68,144)( 69,137)( 70,142)( 71,138)
( 72,140);
s1 := Sym(144)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 29)( 20, 28)( 21, 30)( 22, 35)( 23, 34)( 24, 36)( 25, 32)
( 26, 31)( 27, 33)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)
( 50, 52)( 51, 54)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73,110)( 74,109)( 75,111)( 76,116)( 77,115)
( 78,117)( 79,113)( 80,112)( 81,114)( 82,119)( 83,118)( 84,120)( 85,125)
( 86,124)( 87,126)( 88,122)( 89,121)( 90,123)( 91,137)( 92,136)( 93,138)
( 94,143)( 95,142)( 96,144)( 97,140)( 98,139)( 99,141)(100,128)(101,127)
(102,129)(103,134)(104,133)(105,135)(106,131)(107,130)(108,132);
s2 := Sym(144)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 64)( 38, 66)( 39, 65)( 40, 70)( 41, 72)( 42, 71)( 43, 67)
( 44, 69)( 45, 68)( 46, 55)( 47, 57)( 48, 56)( 49, 61)( 50, 63)( 51, 62)
( 52, 58)( 53, 60)( 54, 59)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)
(103,106)(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)(113,144)
(114,143)(115,139)(116,141)(117,140)(118,127)(119,129)(120,128)(121,133)
(122,135)(123,134)(124,130)(125,132)(126,131);
poly := sub<Sym(144)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope