Polytope of Type {18,32}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,32}*1152
Also Known As : {18,32|2}. if this polytope has another name.
Group : SmallGroup(1152,34504)
Rank : 3
Schlafli Type : {18,32}
Number of vertices, edges, etc : 18, 288, 32
Order of s0s1s2 : 288
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,16}*576
   3-fold quotients : {6,32}*384
   4-fold quotients : {18,8}*288
   6-fold quotients : {6,16}*192
   8-fold quotients : {18,4}*144a
   9-fold quotients : {2,32}*128
   12-fold quotients : {6,8}*96
   16-fold quotients : {18,2}*72
   18-fold quotients : {2,16}*64
   24-fold quotients : {6,4}*48a
   32-fold quotients : {9,2}*36
   36-fold quotients : {2,8}*32
   48-fold quotients : {6,2}*24
   72-fold quotients : {2,4}*16
   96-fold quotients : {3,2}*12
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,145)(  2,147)(  3,146)(  4,153)(  5,152)(  6,151)(  7,150)(  8,149)
(  9,148)( 10,154)( 11,156)( 12,155)( 13,162)( 14,161)( 15,160)( 16,159)
( 17,158)( 18,157)( 19,163)( 20,165)( 21,164)( 22,171)( 23,170)( 24,169)
( 25,168)( 26,167)( 27,166)( 28,172)( 29,174)( 30,173)( 31,180)( 32,179)
( 33,178)( 34,177)( 35,176)( 36,175)( 37,181)( 38,183)( 39,182)( 40,189)
( 41,188)( 42,187)( 43,186)( 44,185)( 45,184)( 46,190)( 47,192)( 48,191)
( 49,198)( 50,197)( 51,196)( 52,195)( 53,194)( 54,193)( 55,199)( 56,201)
( 57,200)( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)( 64,208)
( 65,210)( 66,209)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)( 72,211)
( 73,217)( 74,219)( 75,218)( 76,225)( 77,224)( 78,223)( 79,222)( 80,221)
( 81,220)( 82,226)( 83,228)( 84,227)( 85,234)( 86,233)( 87,232)( 88,231)
( 89,230)( 90,229)( 91,235)( 92,237)( 93,236)( 94,243)( 95,242)( 96,241)
( 97,240)( 98,239)( 99,238)(100,244)(101,246)(102,245)(103,252)(104,251)
(105,250)(106,249)(107,248)(108,247)(109,253)(110,255)(111,254)(112,261)
(113,260)(114,259)(115,258)(116,257)(117,256)(118,262)(119,264)(120,263)
(121,270)(122,269)(123,268)(124,267)(125,266)(126,265)(127,271)(128,273)
(129,272)(130,279)(131,278)(132,277)(133,276)(134,275)(135,274)(136,280)
(137,282)(138,281)(139,288)(140,287)(141,286)(142,285)(143,284)(144,283)
(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,442)(299,444)(300,443)(301,450)(302,449)(303,448)(304,447)
(305,446)(306,445)(307,451)(308,453)(309,452)(310,459)(311,458)(312,457)
(313,456)(314,455)(315,454)(316,460)(317,462)(318,461)(319,468)(320,467)
(321,466)(322,465)(323,464)(324,463)(325,469)(326,471)(327,470)(328,477)
(329,476)(330,475)(331,474)(332,473)(333,472)(334,478)(335,480)(336,479)
(337,486)(338,485)(339,484)(340,483)(341,482)(342,481)(343,487)(344,489)
(345,488)(346,495)(347,494)(348,493)(349,492)(350,491)(351,490)(352,496)
(353,498)(354,497)(355,504)(356,503)(357,502)(358,501)(359,500)(360,499)
(361,505)(362,507)(363,506)(364,513)(365,512)(366,511)(367,510)(368,509)
(369,508)(370,514)(371,516)(372,515)(373,522)(374,521)(375,520)(376,519)
(377,518)(378,517)(379,523)(380,525)(381,524)(382,531)(383,530)(384,529)
(385,528)(386,527)(387,526)(388,532)(389,534)(390,533)(391,540)(392,539)
(393,538)(394,537)(395,536)(396,535)(397,541)(398,543)(399,542)(400,549)
(401,548)(402,547)(403,546)(404,545)(405,544)(406,550)(407,552)(408,551)
(409,558)(410,557)(411,556)(412,555)(413,554)(414,553)(415,559)(416,561)
(417,560)(418,567)(419,566)(420,565)(421,564)(422,563)(423,562)(424,568)
(425,570)(426,569)(427,576)(428,575)(429,574)(430,573)(431,572)(432,571);;
s1 := (  1,148)(  2,150)(  3,149)(  4,145)(  5,147)(  6,146)(  7,153)(  8,152)
(  9,151)( 10,157)( 11,159)( 12,158)( 13,154)( 14,156)( 15,155)( 16,162)
( 17,161)( 18,160)( 19,175)( 20,177)( 21,176)( 22,172)( 23,174)( 24,173)
( 25,180)( 26,179)( 27,178)( 28,166)( 29,168)( 30,167)( 31,163)( 32,165)
( 33,164)( 34,171)( 35,170)( 36,169)( 37,202)( 38,204)( 39,203)( 40,199)
( 41,201)( 42,200)( 43,207)( 44,206)( 45,205)( 46,211)( 47,213)( 48,212)
( 49,208)( 50,210)( 51,209)( 52,216)( 53,215)( 54,214)( 55,184)( 56,186)
( 57,185)( 58,181)( 59,183)( 60,182)( 61,189)( 62,188)( 63,187)( 64,193)
( 65,195)( 66,194)( 67,190)( 68,192)( 69,191)( 70,198)( 71,197)( 72,196)
( 73,256)( 74,258)( 75,257)( 76,253)( 77,255)( 78,254)( 79,261)( 80,260)
( 81,259)( 82,265)( 83,267)( 84,266)( 85,262)( 86,264)( 87,263)( 88,270)
( 89,269)( 90,268)( 91,283)( 92,285)( 93,284)( 94,280)( 95,282)( 96,281)
( 97,288)( 98,287)( 99,286)(100,274)(101,276)(102,275)(103,271)(104,273)
(105,272)(106,279)(107,278)(108,277)(109,220)(110,222)(111,221)(112,217)
(113,219)(114,218)(115,225)(116,224)(117,223)(118,229)(119,231)(120,230)
(121,226)(122,228)(123,227)(124,234)(125,233)(126,232)(127,247)(128,249)
(129,248)(130,244)(131,246)(132,245)(133,252)(134,251)(135,250)(136,238)
(137,240)(138,239)(139,235)(140,237)(141,236)(142,243)(143,242)(144,241)
(289,508)(290,510)(291,509)(292,505)(293,507)(294,506)(295,513)(296,512)
(297,511)(298,517)(299,519)(300,518)(301,514)(302,516)(303,515)(304,522)
(305,521)(306,520)(307,535)(308,537)(309,536)(310,532)(311,534)(312,533)
(313,540)(314,539)(315,538)(316,526)(317,528)(318,527)(319,523)(320,525)
(321,524)(322,531)(323,530)(324,529)(325,562)(326,564)(327,563)(328,559)
(329,561)(330,560)(331,567)(332,566)(333,565)(334,571)(335,573)(336,572)
(337,568)(338,570)(339,569)(340,576)(341,575)(342,574)(343,544)(344,546)
(345,545)(346,541)(347,543)(348,542)(349,549)(350,548)(351,547)(352,553)
(353,555)(354,554)(355,550)(356,552)(357,551)(358,558)(359,557)(360,556)
(361,436)(362,438)(363,437)(364,433)(365,435)(366,434)(367,441)(368,440)
(369,439)(370,445)(371,447)(372,446)(373,442)(374,444)(375,443)(376,450)
(377,449)(378,448)(379,463)(380,465)(381,464)(382,460)(383,462)(384,461)
(385,468)(386,467)(387,466)(388,454)(389,456)(390,455)(391,451)(392,453)
(393,452)(394,459)(395,458)(396,457)(397,490)(398,492)(399,491)(400,487)
(401,489)(402,488)(403,495)(404,494)(405,493)(406,499)(407,501)(408,500)
(409,496)(410,498)(411,497)(412,504)(413,503)(414,502)(415,472)(416,474)
(417,473)(418,469)(419,471)(420,470)(421,477)(422,476)(423,475)(424,481)
(425,483)(426,482)(427,478)(428,480)(429,479)(430,486)(431,485)(432,484);;
s2 := (  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)(  8,296)
(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)( 24,321)
( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)( 32,311)
( 33,312)( 34,313)( 35,314)( 36,315)( 37,343)( 38,344)( 39,345)( 40,346)
( 41,347)( 42,348)( 43,349)( 44,350)( 45,351)( 46,352)( 47,353)( 48,354)
( 49,355)( 50,356)( 51,357)( 52,358)( 53,359)( 54,360)( 55,325)( 56,326)
( 57,327)( 58,328)( 59,329)( 60,330)( 61,331)( 62,332)( 63,333)( 64,334)
( 65,335)( 66,336)( 67,337)( 68,338)( 69,339)( 70,340)( 71,341)( 72,342)
( 73,397)( 74,398)( 75,399)( 76,400)( 77,401)( 78,402)( 79,403)( 80,404)
( 81,405)( 82,406)( 83,407)( 84,408)( 85,409)( 86,410)( 87,411)( 88,412)
( 89,413)( 90,414)( 91,424)( 92,425)( 93,426)( 94,427)( 95,428)( 96,429)
( 97,430)( 98,431)( 99,432)(100,415)(101,416)(102,417)(103,418)(104,419)
(105,420)(106,421)(107,422)(108,423)(109,361)(110,362)(111,363)(112,364)
(113,365)(114,366)(115,367)(116,368)(117,369)(118,370)(119,371)(120,372)
(121,373)(122,374)(123,375)(124,376)(125,377)(126,378)(127,388)(128,389)
(129,390)(130,391)(131,392)(132,393)(133,394)(134,395)(135,396)(136,379)
(137,380)(138,381)(139,382)(140,383)(141,384)(142,385)(143,386)(144,387)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)(168,465)
(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)(176,455)
(177,456)(178,457)(179,458)(180,459)(181,487)(182,488)(183,489)(184,490)
(185,491)(186,492)(187,493)(188,494)(189,495)(190,496)(191,497)(192,498)
(193,499)(194,500)(195,501)(196,502)(197,503)(198,504)(199,469)(200,470)
(201,471)(202,472)(203,473)(204,474)(205,475)(206,476)(207,477)(208,478)
(209,479)(210,480)(211,481)(212,482)(213,483)(214,484)(215,485)(216,486)
(217,541)(218,542)(219,543)(220,544)(221,545)(222,546)(223,547)(224,548)
(225,549)(226,550)(227,551)(228,552)(229,553)(230,554)(231,555)(232,556)
(233,557)(234,558)(235,568)(236,569)(237,570)(238,571)(239,572)(240,573)
(241,574)(242,575)(243,576)(244,559)(245,560)(246,561)(247,562)(248,563)
(249,564)(250,565)(251,566)(252,567)(253,505)(254,506)(255,507)(256,508)
(257,509)(258,510)(259,511)(260,512)(261,513)(262,514)(263,515)(264,516)
(265,517)(266,518)(267,519)(268,520)(269,521)(270,522)(271,532)(272,533)
(273,534)(274,535)(275,536)(276,537)(277,538)(278,539)(279,540)(280,523)
(281,524)(282,525)(283,526)(284,527)(285,528)(286,529)(287,530)(288,531);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,145)(  2,147)(  3,146)(  4,153)(  5,152)(  6,151)(  7,150)
(  8,149)(  9,148)( 10,154)( 11,156)( 12,155)( 13,162)( 14,161)( 15,160)
( 16,159)( 17,158)( 18,157)( 19,163)( 20,165)( 21,164)( 22,171)( 23,170)
( 24,169)( 25,168)( 26,167)( 27,166)( 28,172)( 29,174)( 30,173)( 31,180)
( 32,179)( 33,178)( 34,177)( 35,176)( 36,175)( 37,181)( 38,183)( 39,182)
( 40,189)( 41,188)( 42,187)( 43,186)( 44,185)( 45,184)( 46,190)( 47,192)
( 48,191)( 49,198)( 50,197)( 51,196)( 52,195)( 53,194)( 54,193)( 55,199)
( 56,201)( 57,200)( 58,207)( 59,206)( 60,205)( 61,204)( 62,203)( 63,202)
( 64,208)( 65,210)( 66,209)( 67,216)( 68,215)( 69,214)( 70,213)( 71,212)
( 72,211)( 73,217)( 74,219)( 75,218)( 76,225)( 77,224)( 78,223)( 79,222)
( 80,221)( 81,220)( 82,226)( 83,228)( 84,227)( 85,234)( 86,233)( 87,232)
( 88,231)( 89,230)( 90,229)( 91,235)( 92,237)( 93,236)( 94,243)( 95,242)
( 96,241)( 97,240)( 98,239)( 99,238)(100,244)(101,246)(102,245)(103,252)
(104,251)(105,250)(106,249)(107,248)(108,247)(109,253)(110,255)(111,254)
(112,261)(113,260)(114,259)(115,258)(116,257)(117,256)(118,262)(119,264)
(120,263)(121,270)(122,269)(123,268)(124,267)(125,266)(126,265)(127,271)
(128,273)(129,272)(130,279)(131,278)(132,277)(133,276)(134,275)(135,274)
(136,280)(137,282)(138,281)(139,288)(140,287)(141,286)(142,285)(143,284)
(144,283)(289,433)(290,435)(291,434)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,442)(299,444)(300,443)(301,450)(302,449)(303,448)
(304,447)(305,446)(306,445)(307,451)(308,453)(309,452)(310,459)(311,458)
(312,457)(313,456)(314,455)(315,454)(316,460)(317,462)(318,461)(319,468)
(320,467)(321,466)(322,465)(323,464)(324,463)(325,469)(326,471)(327,470)
(328,477)(329,476)(330,475)(331,474)(332,473)(333,472)(334,478)(335,480)
(336,479)(337,486)(338,485)(339,484)(340,483)(341,482)(342,481)(343,487)
(344,489)(345,488)(346,495)(347,494)(348,493)(349,492)(350,491)(351,490)
(352,496)(353,498)(354,497)(355,504)(356,503)(357,502)(358,501)(359,500)
(360,499)(361,505)(362,507)(363,506)(364,513)(365,512)(366,511)(367,510)
(368,509)(369,508)(370,514)(371,516)(372,515)(373,522)(374,521)(375,520)
(376,519)(377,518)(378,517)(379,523)(380,525)(381,524)(382,531)(383,530)
(384,529)(385,528)(386,527)(387,526)(388,532)(389,534)(390,533)(391,540)
(392,539)(393,538)(394,537)(395,536)(396,535)(397,541)(398,543)(399,542)
(400,549)(401,548)(402,547)(403,546)(404,545)(405,544)(406,550)(407,552)
(408,551)(409,558)(410,557)(411,556)(412,555)(413,554)(414,553)(415,559)
(416,561)(417,560)(418,567)(419,566)(420,565)(421,564)(422,563)(423,562)
(424,568)(425,570)(426,569)(427,576)(428,575)(429,574)(430,573)(431,572)
(432,571);
s1 := Sym(576)!(  1,148)(  2,150)(  3,149)(  4,145)(  5,147)(  6,146)(  7,153)
(  8,152)(  9,151)( 10,157)( 11,159)( 12,158)( 13,154)( 14,156)( 15,155)
( 16,162)( 17,161)( 18,160)( 19,175)( 20,177)( 21,176)( 22,172)( 23,174)
( 24,173)( 25,180)( 26,179)( 27,178)( 28,166)( 29,168)( 30,167)( 31,163)
( 32,165)( 33,164)( 34,171)( 35,170)( 36,169)( 37,202)( 38,204)( 39,203)
( 40,199)( 41,201)( 42,200)( 43,207)( 44,206)( 45,205)( 46,211)( 47,213)
( 48,212)( 49,208)( 50,210)( 51,209)( 52,216)( 53,215)( 54,214)( 55,184)
( 56,186)( 57,185)( 58,181)( 59,183)( 60,182)( 61,189)( 62,188)( 63,187)
( 64,193)( 65,195)( 66,194)( 67,190)( 68,192)( 69,191)( 70,198)( 71,197)
( 72,196)( 73,256)( 74,258)( 75,257)( 76,253)( 77,255)( 78,254)( 79,261)
( 80,260)( 81,259)( 82,265)( 83,267)( 84,266)( 85,262)( 86,264)( 87,263)
( 88,270)( 89,269)( 90,268)( 91,283)( 92,285)( 93,284)( 94,280)( 95,282)
( 96,281)( 97,288)( 98,287)( 99,286)(100,274)(101,276)(102,275)(103,271)
(104,273)(105,272)(106,279)(107,278)(108,277)(109,220)(110,222)(111,221)
(112,217)(113,219)(114,218)(115,225)(116,224)(117,223)(118,229)(119,231)
(120,230)(121,226)(122,228)(123,227)(124,234)(125,233)(126,232)(127,247)
(128,249)(129,248)(130,244)(131,246)(132,245)(133,252)(134,251)(135,250)
(136,238)(137,240)(138,239)(139,235)(140,237)(141,236)(142,243)(143,242)
(144,241)(289,508)(290,510)(291,509)(292,505)(293,507)(294,506)(295,513)
(296,512)(297,511)(298,517)(299,519)(300,518)(301,514)(302,516)(303,515)
(304,522)(305,521)(306,520)(307,535)(308,537)(309,536)(310,532)(311,534)
(312,533)(313,540)(314,539)(315,538)(316,526)(317,528)(318,527)(319,523)
(320,525)(321,524)(322,531)(323,530)(324,529)(325,562)(326,564)(327,563)
(328,559)(329,561)(330,560)(331,567)(332,566)(333,565)(334,571)(335,573)
(336,572)(337,568)(338,570)(339,569)(340,576)(341,575)(342,574)(343,544)
(344,546)(345,545)(346,541)(347,543)(348,542)(349,549)(350,548)(351,547)
(352,553)(353,555)(354,554)(355,550)(356,552)(357,551)(358,558)(359,557)
(360,556)(361,436)(362,438)(363,437)(364,433)(365,435)(366,434)(367,441)
(368,440)(369,439)(370,445)(371,447)(372,446)(373,442)(374,444)(375,443)
(376,450)(377,449)(378,448)(379,463)(380,465)(381,464)(382,460)(383,462)
(384,461)(385,468)(386,467)(387,466)(388,454)(389,456)(390,455)(391,451)
(392,453)(393,452)(394,459)(395,458)(396,457)(397,490)(398,492)(399,491)
(400,487)(401,489)(402,488)(403,495)(404,494)(405,493)(406,499)(407,501)
(408,500)(409,496)(410,498)(411,497)(412,504)(413,503)(414,502)(415,472)
(416,474)(417,473)(418,469)(419,471)(420,470)(421,477)(422,476)(423,475)
(424,481)(425,483)(426,482)(427,478)(428,480)(429,479)(430,486)(431,485)
(432,484);
s2 := Sym(576)!(  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)
(  8,296)(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,316)( 20,317)( 21,318)( 22,319)( 23,320)
( 24,321)( 25,322)( 26,323)( 27,324)( 28,307)( 29,308)( 30,309)( 31,310)
( 32,311)( 33,312)( 34,313)( 35,314)( 36,315)( 37,343)( 38,344)( 39,345)
( 40,346)( 41,347)( 42,348)( 43,349)( 44,350)( 45,351)( 46,352)( 47,353)
( 48,354)( 49,355)( 50,356)( 51,357)( 52,358)( 53,359)( 54,360)( 55,325)
( 56,326)( 57,327)( 58,328)( 59,329)( 60,330)( 61,331)( 62,332)( 63,333)
( 64,334)( 65,335)( 66,336)( 67,337)( 68,338)( 69,339)( 70,340)( 71,341)
( 72,342)( 73,397)( 74,398)( 75,399)( 76,400)( 77,401)( 78,402)( 79,403)
( 80,404)( 81,405)( 82,406)( 83,407)( 84,408)( 85,409)( 86,410)( 87,411)
( 88,412)( 89,413)( 90,414)( 91,424)( 92,425)( 93,426)( 94,427)( 95,428)
( 96,429)( 97,430)( 98,431)( 99,432)(100,415)(101,416)(102,417)(103,418)
(104,419)(105,420)(106,421)(107,422)(108,423)(109,361)(110,362)(111,363)
(112,364)(113,365)(114,366)(115,367)(116,368)(117,369)(118,370)(119,371)
(120,372)(121,373)(122,374)(123,375)(124,376)(125,377)(126,378)(127,388)
(128,389)(129,390)(130,391)(131,392)(132,393)(133,394)(134,395)(135,396)
(136,379)(137,380)(138,381)(139,382)(140,383)(141,384)(142,385)(143,386)
(144,387)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,460)(164,461)(165,462)(166,463)(167,464)
(168,465)(169,466)(170,467)(171,468)(172,451)(173,452)(174,453)(175,454)
(176,455)(177,456)(178,457)(179,458)(180,459)(181,487)(182,488)(183,489)
(184,490)(185,491)(186,492)(187,493)(188,494)(189,495)(190,496)(191,497)
(192,498)(193,499)(194,500)(195,501)(196,502)(197,503)(198,504)(199,469)
(200,470)(201,471)(202,472)(203,473)(204,474)(205,475)(206,476)(207,477)
(208,478)(209,479)(210,480)(211,481)(212,482)(213,483)(214,484)(215,485)
(216,486)(217,541)(218,542)(219,543)(220,544)(221,545)(222,546)(223,547)
(224,548)(225,549)(226,550)(227,551)(228,552)(229,553)(230,554)(231,555)
(232,556)(233,557)(234,558)(235,568)(236,569)(237,570)(238,571)(239,572)
(240,573)(241,574)(242,575)(243,576)(244,559)(245,560)(246,561)(247,562)
(248,563)(249,564)(250,565)(251,566)(252,567)(253,505)(254,506)(255,507)
(256,508)(257,509)(258,510)(259,511)(260,512)(261,513)(262,514)(263,515)
(264,516)(265,517)(266,518)(267,519)(268,520)(269,521)(270,522)(271,532)
(272,533)(273,534)(274,535)(275,536)(276,537)(277,538)(278,539)(279,540)
(280,523)(281,524)(282,525)(283,526)(284,527)(285,528)(286,529)(287,530)
(288,531);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope