Polytope of Type {6,32}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,32}*1152
if this polytope has a name.
Group : SmallGroup(1152,34520)
Rank : 3
Schlafli Type : {6,32}
Number of vertices, edges, etc : 18, 288, 96
Order of s0s1s2 : 32
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,16}*576
   4-fold quotients : {6,8}*288
   8-fold quotients : {6,4}*144
   9-fold quotients : {2,32}*128
   16-fold quotients : {6,4}*72
   18-fold quotients : {2,16}*64
   36-fold quotients : {2,8}*32
   72-fold quotients : {2,4}*16
   144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,145)(  2,147)(  3,146)(  4,151)(  5,153)(  6,152)(  7,148)(  8,150)
(  9,149)( 10,154)( 11,156)( 12,155)( 13,160)( 14,162)( 15,161)( 16,157)
( 17,159)( 18,158)( 19,163)( 20,165)( 21,164)( 22,169)( 23,171)( 24,170)
( 25,166)( 26,168)( 27,167)( 28,172)( 29,174)( 30,173)( 31,178)( 32,180)
( 33,179)( 34,175)( 35,177)( 36,176)( 37,181)( 38,183)( 39,182)( 40,187)
( 41,189)( 42,188)( 43,184)( 44,186)( 45,185)( 46,190)( 47,192)( 48,191)
( 49,196)( 50,198)( 51,197)( 52,193)( 53,195)( 54,194)( 55,199)( 56,201)
( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)( 64,208)
( 65,210)( 66,209)( 67,214)( 68,216)( 69,215)( 70,211)( 71,213)( 72,212)
( 73,217)( 74,219)( 75,218)( 76,223)( 77,225)( 78,224)( 79,220)( 80,222)
( 81,221)( 82,226)( 83,228)( 84,227)( 85,232)( 86,234)( 87,233)( 88,229)
( 89,231)( 90,230)( 91,235)( 92,237)( 93,236)( 94,241)( 95,243)( 96,242)
( 97,238)( 98,240)( 99,239)(100,244)(101,246)(102,245)(103,250)(104,252)
(105,251)(106,247)(107,249)(108,248)(109,253)(110,255)(111,254)(112,259)
(113,261)(114,260)(115,256)(116,258)(117,257)(118,262)(119,264)(120,263)
(121,268)(122,270)(123,269)(124,265)(125,267)(126,266)(127,271)(128,273)
(129,272)(130,277)(131,279)(132,278)(133,274)(134,276)(135,275)(136,280)
(137,282)(138,281)(139,286)(140,288)(141,287)(142,283)(143,285)(144,284)
(289,433)(290,435)(291,434)(292,439)(293,441)(294,440)(295,436)(296,438)
(297,437)(298,442)(299,444)(300,443)(301,448)(302,450)(303,449)(304,445)
(305,447)(306,446)(307,451)(308,453)(309,452)(310,457)(311,459)(312,458)
(313,454)(314,456)(315,455)(316,460)(317,462)(318,461)(319,466)(320,468)
(321,467)(322,463)(323,465)(324,464)(325,469)(326,471)(327,470)(328,475)
(329,477)(330,476)(331,472)(332,474)(333,473)(334,478)(335,480)(336,479)
(337,484)(338,486)(339,485)(340,481)(341,483)(342,482)(343,487)(344,489)
(345,488)(346,493)(347,495)(348,494)(349,490)(350,492)(351,491)(352,496)
(353,498)(354,497)(355,502)(356,504)(357,503)(358,499)(359,501)(360,500)
(361,505)(362,507)(363,506)(364,511)(365,513)(366,512)(367,508)(368,510)
(369,509)(370,514)(371,516)(372,515)(373,520)(374,522)(375,521)(376,517)
(377,519)(378,518)(379,523)(380,525)(381,524)(382,529)(383,531)(384,530)
(385,526)(386,528)(387,527)(388,532)(389,534)(390,533)(391,538)(392,540)
(393,539)(394,535)(395,537)(396,536)(397,541)(398,543)(399,542)(400,547)
(401,549)(402,548)(403,544)(404,546)(405,545)(406,550)(407,552)(408,551)
(409,556)(410,558)(411,557)(412,553)(413,555)(414,554)(415,559)(416,561)
(417,560)(418,565)(419,567)(420,566)(421,562)(422,564)(423,563)(424,568)
(425,570)(426,569)(427,574)(428,576)(429,575)(430,571)(431,573)(432,572);;
s1 := (  1,290)(  2,289)(  3,291)(  4,294)(  5,293)(  6,292)(  7,295)(  8,297)
(  9,296)( 10,299)( 11,298)( 12,300)( 13,303)( 14,302)( 15,301)( 16,304)
( 17,306)( 18,305)( 19,317)( 20,316)( 21,318)( 22,321)( 23,320)( 24,319)
( 25,322)( 26,324)( 27,323)( 28,308)( 29,307)( 30,309)( 31,312)( 32,311)
( 33,310)( 34,313)( 35,315)( 36,314)( 37,344)( 38,343)( 39,345)( 40,348)
( 41,347)( 42,346)( 43,349)( 44,351)( 45,350)( 46,353)( 47,352)( 48,354)
( 49,357)( 50,356)( 51,355)( 52,358)( 53,360)( 54,359)( 55,326)( 56,325)
( 57,327)( 58,330)( 59,329)( 60,328)( 61,331)( 62,333)( 63,332)( 64,335)
( 65,334)( 66,336)( 67,339)( 68,338)( 69,337)( 70,340)( 71,342)( 72,341)
( 73,398)( 74,397)( 75,399)( 76,402)( 77,401)( 78,400)( 79,403)( 80,405)
( 81,404)( 82,407)( 83,406)( 84,408)( 85,411)( 86,410)( 87,409)( 88,412)
( 89,414)( 90,413)( 91,425)( 92,424)( 93,426)( 94,429)( 95,428)( 96,427)
( 97,430)( 98,432)( 99,431)(100,416)(101,415)(102,417)(103,420)(104,419)
(105,418)(106,421)(107,423)(108,422)(109,362)(110,361)(111,363)(112,366)
(113,365)(114,364)(115,367)(116,369)(117,368)(118,371)(119,370)(120,372)
(121,375)(122,374)(123,373)(124,376)(125,378)(126,377)(127,389)(128,388)
(129,390)(130,393)(131,392)(132,391)(133,394)(134,396)(135,395)(136,380)
(137,379)(138,381)(139,384)(140,383)(141,382)(142,385)(143,387)(144,386)
(145,434)(146,433)(147,435)(148,438)(149,437)(150,436)(151,439)(152,441)
(153,440)(154,443)(155,442)(156,444)(157,447)(158,446)(159,445)(160,448)
(161,450)(162,449)(163,461)(164,460)(165,462)(166,465)(167,464)(168,463)
(169,466)(170,468)(171,467)(172,452)(173,451)(174,453)(175,456)(176,455)
(177,454)(178,457)(179,459)(180,458)(181,488)(182,487)(183,489)(184,492)
(185,491)(186,490)(187,493)(188,495)(189,494)(190,497)(191,496)(192,498)
(193,501)(194,500)(195,499)(196,502)(197,504)(198,503)(199,470)(200,469)
(201,471)(202,474)(203,473)(204,472)(205,475)(206,477)(207,476)(208,479)
(209,478)(210,480)(211,483)(212,482)(213,481)(214,484)(215,486)(216,485)
(217,542)(218,541)(219,543)(220,546)(221,545)(222,544)(223,547)(224,549)
(225,548)(226,551)(227,550)(228,552)(229,555)(230,554)(231,553)(232,556)
(233,558)(234,557)(235,569)(236,568)(237,570)(238,573)(239,572)(240,571)
(241,574)(242,576)(243,575)(244,560)(245,559)(246,561)(247,564)(248,563)
(249,562)(250,565)(251,567)(252,566)(253,506)(254,505)(255,507)(256,510)
(257,509)(258,508)(259,511)(260,513)(261,512)(262,515)(263,514)(264,516)
(265,519)(266,518)(267,517)(268,520)(269,522)(270,521)(271,533)(272,532)
(273,534)(274,537)(275,536)(276,535)(277,538)(278,540)(279,539)(280,524)
(281,523)(282,525)(283,528)(284,527)(285,526)(286,529)(287,531)(288,530);;
s2 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)( 20, 33)
( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)( 37, 55)
( 38, 60)( 39, 62)( 40, 58)( 41, 63)( 42, 56)( 43, 61)( 44, 57)( 45, 59)
( 46, 64)( 47, 69)( 48, 71)( 49, 67)( 50, 72)( 51, 65)( 52, 70)( 53, 66)
( 54, 68)( 73,109)( 74,114)( 75,116)( 76,112)( 77,117)( 78,110)( 79,115)
( 80,111)( 81,113)( 82,118)( 83,123)( 84,125)( 85,121)( 86,126)( 87,119)
( 88,124)( 89,120)( 90,122)( 91,136)( 92,141)( 93,143)( 94,139)( 95,144)
( 96,137)( 97,142)( 98,138)( 99,140)(100,127)(101,132)(102,134)(103,130)
(104,135)(105,128)(106,133)(107,129)(108,131)(146,150)(147,152)(149,153)
(155,159)(156,161)(158,162)(163,172)(164,177)(165,179)(166,175)(167,180)
(168,173)(169,178)(170,174)(171,176)(181,199)(182,204)(183,206)(184,202)
(185,207)(186,200)(187,205)(188,201)(189,203)(190,208)(191,213)(192,215)
(193,211)(194,216)(195,209)(196,214)(197,210)(198,212)(217,253)(218,258)
(219,260)(220,256)(221,261)(222,254)(223,259)(224,255)(225,257)(226,262)
(227,267)(228,269)(229,265)(230,270)(231,263)(232,268)(233,264)(234,266)
(235,280)(236,285)(237,287)(238,283)(239,288)(240,281)(241,286)(242,282)
(243,284)(244,271)(245,276)(246,278)(247,274)(248,279)(249,272)(250,277)
(251,273)(252,275)(289,361)(290,366)(291,368)(292,364)(293,369)(294,362)
(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)(302,378)
(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)(310,391)
(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)(318,386)
(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,415)(326,420)
(327,422)(328,418)(329,423)(330,416)(331,421)(332,417)(333,419)(334,424)
(335,429)(336,431)(337,427)(338,432)(339,425)(340,430)(341,426)(342,428)
(343,397)(344,402)(345,404)(346,400)(347,405)(348,398)(349,403)(350,399)
(351,401)(352,406)(353,411)(354,413)(355,409)(356,414)(357,407)(358,412)
(359,408)(360,410)(433,505)(434,510)(435,512)(436,508)(437,513)(438,506)
(439,511)(440,507)(441,509)(442,514)(443,519)(444,521)(445,517)(446,522)
(447,515)(448,520)(449,516)(450,518)(451,532)(452,537)(453,539)(454,535)
(455,540)(456,533)(457,538)(458,534)(459,536)(460,523)(461,528)(462,530)
(463,526)(464,531)(465,524)(466,529)(467,525)(468,527)(469,559)(470,564)
(471,566)(472,562)(473,567)(474,560)(475,565)(476,561)(477,563)(478,568)
(479,573)(480,575)(481,571)(482,576)(483,569)(484,574)(485,570)(486,572)
(487,541)(488,546)(489,548)(490,544)(491,549)(492,542)(493,547)(494,543)
(495,545)(496,550)(497,555)(498,557)(499,553)(500,558)(501,551)(502,556)
(503,552)(504,554);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,145)(  2,147)(  3,146)(  4,151)(  5,153)(  6,152)(  7,148)
(  8,150)(  9,149)( 10,154)( 11,156)( 12,155)( 13,160)( 14,162)( 15,161)
( 16,157)( 17,159)( 18,158)( 19,163)( 20,165)( 21,164)( 22,169)( 23,171)
( 24,170)( 25,166)( 26,168)( 27,167)( 28,172)( 29,174)( 30,173)( 31,178)
( 32,180)( 33,179)( 34,175)( 35,177)( 36,176)( 37,181)( 38,183)( 39,182)
( 40,187)( 41,189)( 42,188)( 43,184)( 44,186)( 45,185)( 46,190)( 47,192)
( 48,191)( 49,196)( 50,198)( 51,197)( 52,193)( 53,195)( 54,194)( 55,199)
( 56,201)( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)
( 64,208)( 65,210)( 66,209)( 67,214)( 68,216)( 69,215)( 70,211)( 71,213)
( 72,212)( 73,217)( 74,219)( 75,218)( 76,223)( 77,225)( 78,224)( 79,220)
( 80,222)( 81,221)( 82,226)( 83,228)( 84,227)( 85,232)( 86,234)( 87,233)
( 88,229)( 89,231)( 90,230)( 91,235)( 92,237)( 93,236)( 94,241)( 95,243)
( 96,242)( 97,238)( 98,240)( 99,239)(100,244)(101,246)(102,245)(103,250)
(104,252)(105,251)(106,247)(107,249)(108,248)(109,253)(110,255)(111,254)
(112,259)(113,261)(114,260)(115,256)(116,258)(117,257)(118,262)(119,264)
(120,263)(121,268)(122,270)(123,269)(124,265)(125,267)(126,266)(127,271)
(128,273)(129,272)(130,277)(131,279)(132,278)(133,274)(134,276)(135,275)
(136,280)(137,282)(138,281)(139,286)(140,288)(141,287)(142,283)(143,285)
(144,284)(289,433)(290,435)(291,434)(292,439)(293,441)(294,440)(295,436)
(296,438)(297,437)(298,442)(299,444)(300,443)(301,448)(302,450)(303,449)
(304,445)(305,447)(306,446)(307,451)(308,453)(309,452)(310,457)(311,459)
(312,458)(313,454)(314,456)(315,455)(316,460)(317,462)(318,461)(319,466)
(320,468)(321,467)(322,463)(323,465)(324,464)(325,469)(326,471)(327,470)
(328,475)(329,477)(330,476)(331,472)(332,474)(333,473)(334,478)(335,480)
(336,479)(337,484)(338,486)(339,485)(340,481)(341,483)(342,482)(343,487)
(344,489)(345,488)(346,493)(347,495)(348,494)(349,490)(350,492)(351,491)
(352,496)(353,498)(354,497)(355,502)(356,504)(357,503)(358,499)(359,501)
(360,500)(361,505)(362,507)(363,506)(364,511)(365,513)(366,512)(367,508)
(368,510)(369,509)(370,514)(371,516)(372,515)(373,520)(374,522)(375,521)
(376,517)(377,519)(378,518)(379,523)(380,525)(381,524)(382,529)(383,531)
(384,530)(385,526)(386,528)(387,527)(388,532)(389,534)(390,533)(391,538)
(392,540)(393,539)(394,535)(395,537)(396,536)(397,541)(398,543)(399,542)
(400,547)(401,549)(402,548)(403,544)(404,546)(405,545)(406,550)(407,552)
(408,551)(409,556)(410,558)(411,557)(412,553)(413,555)(414,554)(415,559)
(416,561)(417,560)(418,565)(419,567)(420,566)(421,562)(422,564)(423,563)
(424,568)(425,570)(426,569)(427,574)(428,576)(429,575)(430,571)(431,573)
(432,572);
s1 := Sym(576)!(  1,290)(  2,289)(  3,291)(  4,294)(  5,293)(  6,292)(  7,295)
(  8,297)(  9,296)( 10,299)( 11,298)( 12,300)( 13,303)( 14,302)( 15,301)
( 16,304)( 17,306)( 18,305)( 19,317)( 20,316)( 21,318)( 22,321)( 23,320)
( 24,319)( 25,322)( 26,324)( 27,323)( 28,308)( 29,307)( 30,309)( 31,312)
( 32,311)( 33,310)( 34,313)( 35,315)( 36,314)( 37,344)( 38,343)( 39,345)
( 40,348)( 41,347)( 42,346)( 43,349)( 44,351)( 45,350)( 46,353)( 47,352)
( 48,354)( 49,357)( 50,356)( 51,355)( 52,358)( 53,360)( 54,359)( 55,326)
( 56,325)( 57,327)( 58,330)( 59,329)( 60,328)( 61,331)( 62,333)( 63,332)
( 64,335)( 65,334)( 66,336)( 67,339)( 68,338)( 69,337)( 70,340)( 71,342)
( 72,341)( 73,398)( 74,397)( 75,399)( 76,402)( 77,401)( 78,400)( 79,403)
( 80,405)( 81,404)( 82,407)( 83,406)( 84,408)( 85,411)( 86,410)( 87,409)
( 88,412)( 89,414)( 90,413)( 91,425)( 92,424)( 93,426)( 94,429)( 95,428)
( 96,427)( 97,430)( 98,432)( 99,431)(100,416)(101,415)(102,417)(103,420)
(104,419)(105,418)(106,421)(107,423)(108,422)(109,362)(110,361)(111,363)
(112,366)(113,365)(114,364)(115,367)(116,369)(117,368)(118,371)(119,370)
(120,372)(121,375)(122,374)(123,373)(124,376)(125,378)(126,377)(127,389)
(128,388)(129,390)(130,393)(131,392)(132,391)(133,394)(134,396)(135,395)
(136,380)(137,379)(138,381)(139,384)(140,383)(141,382)(142,385)(143,387)
(144,386)(145,434)(146,433)(147,435)(148,438)(149,437)(150,436)(151,439)
(152,441)(153,440)(154,443)(155,442)(156,444)(157,447)(158,446)(159,445)
(160,448)(161,450)(162,449)(163,461)(164,460)(165,462)(166,465)(167,464)
(168,463)(169,466)(170,468)(171,467)(172,452)(173,451)(174,453)(175,456)
(176,455)(177,454)(178,457)(179,459)(180,458)(181,488)(182,487)(183,489)
(184,492)(185,491)(186,490)(187,493)(188,495)(189,494)(190,497)(191,496)
(192,498)(193,501)(194,500)(195,499)(196,502)(197,504)(198,503)(199,470)
(200,469)(201,471)(202,474)(203,473)(204,472)(205,475)(206,477)(207,476)
(208,479)(209,478)(210,480)(211,483)(212,482)(213,481)(214,484)(215,486)
(216,485)(217,542)(218,541)(219,543)(220,546)(221,545)(222,544)(223,547)
(224,549)(225,548)(226,551)(227,550)(228,552)(229,555)(230,554)(231,553)
(232,556)(233,558)(234,557)(235,569)(236,568)(237,570)(238,573)(239,572)
(240,571)(241,574)(242,576)(243,575)(244,560)(245,559)(246,561)(247,564)
(248,563)(249,562)(250,565)(251,567)(252,566)(253,506)(254,505)(255,507)
(256,510)(257,509)(258,508)(259,511)(260,513)(261,512)(262,515)(263,514)
(264,516)(265,519)(266,518)(267,517)(268,520)(269,522)(270,521)(271,533)
(272,532)(273,534)(274,537)(275,536)(276,535)(277,538)(278,540)(279,539)
(280,524)(281,523)(282,525)(283,528)(284,527)(285,526)(286,529)(287,531)
(288,530);
s2 := Sym(576)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 19, 28)
( 20, 33)( 21, 35)( 22, 31)( 23, 36)( 24, 29)( 25, 34)( 26, 30)( 27, 32)
( 37, 55)( 38, 60)( 39, 62)( 40, 58)( 41, 63)( 42, 56)( 43, 61)( 44, 57)
( 45, 59)( 46, 64)( 47, 69)( 48, 71)( 49, 67)( 50, 72)( 51, 65)( 52, 70)
( 53, 66)( 54, 68)( 73,109)( 74,114)( 75,116)( 76,112)( 77,117)( 78,110)
( 79,115)( 80,111)( 81,113)( 82,118)( 83,123)( 84,125)( 85,121)( 86,126)
( 87,119)( 88,124)( 89,120)( 90,122)( 91,136)( 92,141)( 93,143)( 94,139)
( 95,144)( 96,137)( 97,142)( 98,138)( 99,140)(100,127)(101,132)(102,134)
(103,130)(104,135)(105,128)(106,133)(107,129)(108,131)(146,150)(147,152)
(149,153)(155,159)(156,161)(158,162)(163,172)(164,177)(165,179)(166,175)
(167,180)(168,173)(169,178)(170,174)(171,176)(181,199)(182,204)(183,206)
(184,202)(185,207)(186,200)(187,205)(188,201)(189,203)(190,208)(191,213)
(192,215)(193,211)(194,216)(195,209)(196,214)(197,210)(198,212)(217,253)
(218,258)(219,260)(220,256)(221,261)(222,254)(223,259)(224,255)(225,257)
(226,262)(227,267)(228,269)(229,265)(230,270)(231,263)(232,268)(233,264)
(234,266)(235,280)(236,285)(237,287)(238,283)(239,288)(240,281)(241,286)
(242,282)(243,284)(244,271)(245,276)(246,278)(247,274)(248,279)(249,272)
(250,277)(251,273)(252,275)(289,361)(290,366)(291,368)(292,364)(293,369)
(294,362)(295,367)(296,363)(297,365)(298,370)(299,375)(300,377)(301,373)
(302,378)(303,371)(304,376)(305,372)(306,374)(307,388)(308,393)(309,395)
(310,391)(311,396)(312,389)(313,394)(314,390)(315,392)(316,379)(317,384)
(318,386)(319,382)(320,387)(321,380)(322,385)(323,381)(324,383)(325,415)
(326,420)(327,422)(328,418)(329,423)(330,416)(331,421)(332,417)(333,419)
(334,424)(335,429)(336,431)(337,427)(338,432)(339,425)(340,430)(341,426)
(342,428)(343,397)(344,402)(345,404)(346,400)(347,405)(348,398)(349,403)
(350,399)(351,401)(352,406)(353,411)(354,413)(355,409)(356,414)(357,407)
(358,412)(359,408)(360,410)(433,505)(434,510)(435,512)(436,508)(437,513)
(438,506)(439,511)(440,507)(441,509)(442,514)(443,519)(444,521)(445,517)
(446,522)(447,515)(448,520)(449,516)(450,518)(451,532)(452,537)(453,539)
(454,535)(455,540)(456,533)(457,538)(458,534)(459,536)(460,523)(461,528)
(462,530)(463,526)(464,531)(465,524)(466,529)(467,525)(468,527)(469,559)
(470,564)(471,566)(472,562)(473,567)(474,560)(475,565)(476,561)(477,563)
(478,568)(479,573)(480,575)(481,571)(482,576)(483,569)(484,574)(485,570)
(486,572)(487,541)(488,546)(489,548)(490,544)(491,549)(492,542)(493,547)
(494,543)(495,545)(496,550)(497,555)(498,557)(499,553)(500,558)(501,551)
(502,556)(503,552)(504,554);
poly := sub<Sym(576)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope