include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,43028)
Rank : 4
Schlafli Type : {4,12,4}
Number of vertices, edges, etc : 12, 72, 72, 4
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,4}*576a, {4,12,2}*576
4-fold quotients : {4,6,2}*288
8-fold quotients : {4,6,2}*144
9-fold quotients : {4,4,4}*128
18-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
36-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,361)( 2,366)( 3,368)( 4,364)( 5,369)( 6,362)( 7,367)( 8,363)
( 9,365)( 10,370)( 11,375)( 12,377)( 13,373)( 14,378)( 15,371)( 16,376)
( 17,372)( 18,374)( 19,379)( 20,384)( 21,386)( 22,382)( 23,387)( 24,380)
( 25,385)( 26,381)( 27,383)( 28,388)( 29,393)( 30,395)( 31,391)( 32,396)
( 33,389)( 34,394)( 35,390)( 36,392)( 37,397)( 38,402)( 39,404)( 40,400)
( 41,405)( 42,398)( 43,403)( 44,399)( 45,401)( 46,406)( 47,411)( 48,413)
( 49,409)( 50,414)( 51,407)( 52,412)( 53,408)( 54,410)( 55,415)( 56,420)
( 57,422)( 58,418)( 59,423)( 60,416)( 61,421)( 62,417)( 63,419)( 64,424)
( 65,429)( 66,431)( 67,427)( 68,432)( 69,425)( 70,430)( 71,426)( 72,428)
( 73,289)( 74,294)( 75,296)( 76,292)( 77,297)( 78,290)( 79,295)( 80,291)
( 81,293)( 82,298)( 83,303)( 84,305)( 85,301)( 86,306)( 87,299)( 88,304)
( 89,300)( 90,302)( 91,307)( 92,312)( 93,314)( 94,310)( 95,315)( 96,308)
( 97,313)( 98,309)( 99,311)(100,316)(101,321)(102,323)(103,319)(104,324)
(105,317)(106,322)(107,318)(108,320)(109,325)(110,330)(111,332)(112,328)
(113,333)(114,326)(115,331)(116,327)(117,329)(118,334)(119,339)(120,341)
(121,337)(122,342)(123,335)(124,340)(125,336)(126,338)(127,343)(128,348)
(129,350)(130,346)(131,351)(132,344)(133,349)(134,345)(135,347)(136,352)
(137,357)(138,359)(139,355)(140,360)(141,353)(142,358)(143,354)(144,356)
(145,514)(146,519)(147,521)(148,517)(149,522)(150,515)(151,520)(152,516)
(153,518)(154,505)(155,510)(156,512)(157,508)(158,513)(159,506)(160,511)
(161,507)(162,509)(163,532)(164,537)(165,539)(166,535)(167,540)(168,533)
(169,538)(170,534)(171,536)(172,523)(173,528)(174,530)(175,526)(176,531)
(177,524)(178,529)(179,525)(180,527)(181,550)(182,555)(183,557)(184,553)
(185,558)(186,551)(187,556)(188,552)(189,554)(190,541)(191,546)(192,548)
(193,544)(194,549)(195,542)(196,547)(197,543)(198,545)(199,568)(200,573)
(201,575)(202,571)(203,576)(204,569)(205,574)(206,570)(207,572)(208,559)
(209,564)(210,566)(211,562)(212,567)(213,560)(214,565)(215,561)(216,563)
(217,442)(218,447)(219,449)(220,445)(221,450)(222,443)(223,448)(224,444)
(225,446)(226,433)(227,438)(228,440)(229,436)(230,441)(231,434)(232,439)
(233,435)(234,437)(235,460)(236,465)(237,467)(238,463)(239,468)(240,461)
(241,466)(242,462)(243,464)(244,451)(245,456)(246,458)(247,454)(248,459)
(249,452)(250,457)(251,453)(252,455)(253,478)(254,483)(255,485)(256,481)
(257,486)(258,479)(259,484)(260,480)(261,482)(262,469)(263,474)(264,476)
(265,472)(266,477)(267,470)(268,475)(269,471)(270,473)(271,496)(272,501)
(273,503)(274,499)(275,504)(276,497)(277,502)(278,498)(279,500)(280,487)
(281,492)(282,494)(283,490)(284,495)(285,488)(286,493)(287,489)(288,491);;
s1 := ( 1,145)( 2,147)( 3,146)( 4,149)( 5,148)( 6,150)( 7,153)( 8,152)
( 9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)( 16,162)
( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)( 24,168)
( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)( 32,175)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)( 40,185)
( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)( 48,191)
( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)( 56,201)
( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)( 64,208)
( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)( 72,214)
( 73,217)( 74,219)( 75,218)( 76,221)( 77,220)( 78,222)( 79,225)( 80,224)
( 81,223)( 82,226)( 83,228)( 84,227)( 85,230)( 86,229)( 87,231)( 88,234)
( 89,233)( 90,232)( 91,235)( 92,237)( 93,236)( 94,239)( 95,238)( 96,240)
( 97,243)( 98,242)( 99,241)(100,244)(101,246)(102,245)(103,248)(104,247)
(105,249)(106,252)(107,251)(108,250)(109,253)(110,255)(111,254)(112,257)
(113,256)(114,258)(115,261)(116,260)(117,259)(118,262)(119,264)(120,263)
(121,266)(122,265)(123,267)(124,270)(125,269)(126,268)(127,271)(128,273)
(129,272)(130,275)(131,274)(132,276)(133,279)(134,278)(135,277)(136,280)
(137,282)(138,281)(139,284)(140,283)(141,285)(142,288)(143,287)(144,286)
(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)(296,440)
(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)(304,450)
(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)(312,456)
(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)(320,463)
(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)(328,473)
(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)(336,479)
(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)(344,489)
(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)(352,496)
(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)(360,502)
(361,505)(362,507)(363,506)(364,509)(365,508)(366,510)(367,513)(368,512)
(369,511)(370,514)(371,516)(372,515)(373,518)(374,517)(375,519)(376,522)
(377,521)(378,520)(379,523)(380,525)(381,524)(382,527)(383,526)(384,528)
(385,531)(386,530)(387,529)(388,532)(389,534)(390,533)(391,536)(392,535)
(393,537)(394,540)(395,539)(396,538)(397,541)(398,543)(399,542)(400,545)
(401,544)(402,546)(403,549)(404,548)(405,547)(406,550)(407,552)(408,551)
(409,554)(410,553)(411,555)(412,558)(413,557)(414,556)(415,559)(416,561)
(417,560)(418,563)(419,562)(420,564)(421,567)(422,566)(423,565)(424,568)
(425,570)(426,569)(427,572)(428,571)(429,573)(430,576)(431,575)(432,574);;
s2 := ( 1, 13)( 2, 15)( 3, 14)( 4, 10)( 5, 12)( 6, 11)( 7, 16)( 8, 18)
( 9, 17)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)( 25, 34)
( 26, 36)( 27, 35)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)
( 43, 52)( 44, 54)( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)
( 60, 65)( 61, 70)( 62, 72)( 63, 71)( 73,121)( 74,123)( 75,122)( 76,118)
( 77,120)( 78,119)( 79,124)( 80,126)( 81,125)( 82,112)( 83,114)( 84,113)
( 85,109)( 86,111)( 87,110)( 88,115)( 89,117)( 90,116)( 91,139)( 92,141)
( 93,140)( 94,136)( 95,138)( 96,137)( 97,142)( 98,144)( 99,143)(100,130)
(101,132)(102,131)(103,127)(104,129)(105,128)(106,133)(107,135)(108,134)
(145,175)(146,177)(147,176)(148,172)(149,174)(150,173)(151,178)(152,180)
(153,179)(154,166)(155,168)(156,167)(157,163)(158,165)(159,164)(160,169)
(161,171)(162,170)(181,211)(182,213)(183,212)(184,208)(185,210)(186,209)
(187,214)(188,216)(189,215)(190,202)(191,204)(192,203)(193,199)(194,201)
(195,200)(196,205)(197,207)(198,206)(217,283)(218,285)(219,284)(220,280)
(221,282)(222,281)(223,286)(224,288)(225,287)(226,274)(227,276)(228,275)
(229,271)(230,273)(231,272)(232,277)(233,279)(234,278)(235,265)(236,267)
(237,266)(238,262)(239,264)(240,263)(241,268)(242,270)(243,269)(244,256)
(245,258)(246,257)(247,253)(248,255)(249,254)(250,259)(251,261)(252,260)
(289,337)(290,339)(291,338)(292,334)(293,336)(294,335)(295,340)(296,342)
(297,341)(298,328)(299,330)(300,329)(301,325)(302,327)(303,326)(304,331)
(305,333)(306,332)(307,355)(308,357)(309,356)(310,352)(311,354)(312,353)
(313,358)(314,360)(315,359)(316,346)(317,348)(318,347)(319,343)(320,345)
(321,344)(322,349)(323,351)(324,350)(361,373)(362,375)(363,374)(364,370)
(365,372)(366,371)(367,376)(368,378)(369,377)(379,391)(380,393)(381,392)
(382,388)(383,390)(384,389)(385,394)(386,396)(387,395)(397,409)(398,411)
(399,410)(400,406)(401,408)(402,407)(403,412)(404,414)(405,413)(415,427)
(416,429)(417,428)(418,424)(419,426)(420,425)(421,430)(422,432)(423,431)
(433,499)(434,501)(435,500)(436,496)(437,498)(438,497)(439,502)(440,504)
(441,503)(442,490)(443,492)(444,491)(445,487)(446,489)(447,488)(448,493)
(449,495)(450,494)(451,481)(452,483)(453,482)(454,478)(455,480)(456,479)
(457,484)(458,486)(459,485)(460,472)(461,474)(462,473)(463,469)(464,471)
(465,470)(466,475)(467,477)(468,476)(505,535)(506,537)(507,536)(508,532)
(509,534)(510,533)(511,538)(512,540)(513,539)(514,526)(515,528)(516,527)
(517,523)(518,525)(519,524)(520,529)(521,531)(522,530)(541,571)(542,573)
(543,572)(544,568)(545,570)(546,569)(547,574)(548,576)(549,575)(550,562)
(551,564)(552,563)(553,559)(554,561)(555,560)(556,565)(557,567)(558,566);;
s3 := ( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 77)( 6, 78)( 7, 79)( 8, 80)
( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)
( 17, 89)( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)
( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)
( 33,105)( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)
( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)
( 49,121)( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)
( 57,129)( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)
( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)
(145,217)(146,218)(147,219)(148,220)(149,221)(150,222)(151,223)(152,224)
(153,225)(154,226)(155,227)(156,228)(157,229)(158,230)(159,231)(160,232)
(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)(168,240)
(169,241)(170,242)(171,243)(172,244)(173,245)(174,246)(175,247)(176,248)
(177,249)(178,250)(179,251)(180,252)(181,253)(182,254)(183,255)(184,256)
(185,257)(186,258)(187,259)(188,260)(189,261)(190,262)(191,263)(192,264)
(193,265)(194,266)(195,267)(196,268)(197,269)(198,270)(199,271)(200,272)
(201,273)(202,274)(203,275)(204,276)(205,277)(206,278)(207,279)(208,280)
(209,281)(210,282)(211,283)(212,284)(213,285)(214,286)(215,287)(216,288)
(289,361)(290,362)(291,363)(292,364)(293,365)(294,366)(295,367)(296,368)
(297,369)(298,370)(299,371)(300,372)(301,373)(302,374)(303,375)(304,376)
(305,377)(306,378)(307,379)(308,380)(309,381)(310,382)(311,383)(312,384)
(313,385)(314,386)(315,387)(316,388)(317,389)(318,390)(319,391)(320,392)
(321,393)(322,394)(323,395)(324,396)(325,397)(326,398)(327,399)(328,400)
(329,401)(330,402)(331,403)(332,404)(333,405)(334,406)(335,407)(336,408)
(337,409)(338,410)(339,411)(340,412)(341,413)(342,414)(343,415)(344,416)
(345,417)(346,418)(347,419)(348,420)(349,421)(350,422)(351,423)(352,424)
(353,425)(354,426)(355,427)(356,428)(357,429)(358,430)(359,431)(360,432)
(433,505)(434,506)(435,507)(436,508)(437,509)(438,510)(439,511)(440,512)
(441,513)(442,514)(443,515)(444,516)(445,517)(446,518)(447,519)(448,520)
(449,521)(450,522)(451,523)(452,524)(453,525)(454,526)(455,527)(456,528)
(457,529)(458,530)(459,531)(460,532)(461,533)(462,534)(463,535)(464,536)
(465,537)(466,538)(467,539)(468,540)(469,541)(470,542)(471,543)(472,544)
(473,545)(474,546)(475,547)(476,548)(477,549)(478,550)(479,551)(480,552)
(481,553)(482,554)(483,555)(484,556)(485,557)(486,558)(487,559)(488,560)
(489,561)(490,562)(491,563)(492,564)(493,565)(494,566)(495,567)(496,568)
(497,569)(498,570)(499,571)(500,572)(501,573)(502,574)(503,575)(504,576);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,361)( 2,366)( 3,368)( 4,364)( 5,369)( 6,362)( 7,367)
( 8,363)( 9,365)( 10,370)( 11,375)( 12,377)( 13,373)( 14,378)( 15,371)
( 16,376)( 17,372)( 18,374)( 19,379)( 20,384)( 21,386)( 22,382)( 23,387)
( 24,380)( 25,385)( 26,381)( 27,383)( 28,388)( 29,393)( 30,395)( 31,391)
( 32,396)( 33,389)( 34,394)( 35,390)( 36,392)( 37,397)( 38,402)( 39,404)
( 40,400)( 41,405)( 42,398)( 43,403)( 44,399)( 45,401)( 46,406)( 47,411)
( 48,413)( 49,409)( 50,414)( 51,407)( 52,412)( 53,408)( 54,410)( 55,415)
( 56,420)( 57,422)( 58,418)( 59,423)( 60,416)( 61,421)( 62,417)( 63,419)
( 64,424)( 65,429)( 66,431)( 67,427)( 68,432)( 69,425)( 70,430)( 71,426)
( 72,428)( 73,289)( 74,294)( 75,296)( 76,292)( 77,297)( 78,290)( 79,295)
( 80,291)( 81,293)( 82,298)( 83,303)( 84,305)( 85,301)( 86,306)( 87,299)
( 88,304)( 89,300)( 90,302)( 91,307)( 92,312)( 93,314)( 94,310)( 95,315)
( 96,308)( 97,313)( 98,309)( 99,311)(100,316)(101,321)(102,323)(103,319)
(104,324)(105,317)(106,322)(107,318)(108,320)(109,325)(110,330)(111,332)
(112,328)(113,333)(114,326)(115,331)(116,327)(117,329)(118,334)(119,339)
(120,341)(121,337)(122,342)(123,335)(124,340)(125,336)(126,338)(127,343)
(128,348)(129,350)(130,346)(131,351)(132,344)(133,349)(134,345)(135,347)
(136,352)(137,357)(138,359)(139,355)(140,360)(141,353)(142,358)(143,354)
(144,356)(145,514)(146,519)(147,521)(148,517)(149,522)(150,515)(151,520)
(152,516)(153,518)(154,505)(155,510)(156,512)(157,508)(158,513)(159,506)
(160,511)(161,507)(162,509)(163,532)(164,537)(165,539)(166,535)(167,540)
(168,533)(169,538)(170,534)(171,536)(172,523)(173,528)(174,530)(175,526)
(176,531)(177,524)(178,529)(179,525)(180,527)(181,550)(182,555)(183,557)
(184,553)(185,558)(186,551)(187,556)(188,552)(189,554)(190,541)(191,546)
(192,548)(193,544)(194,549)(195,542)(196,547)(197,543)(198,545)(199,568)
(200,573)(201,575)(202,571)(203,576)(204,569)(205,574)(206,570)(207,572)
(208,559)(209,564)(210,566)(211,562)(212,567)(213,560)(214,565)(215,561)
(216,563)(217,442)(218,447)(219,449)(220,445)(221,450)(222,443)(223,448)
(224,444)(225,446)(226,433)(227,438)(228,440)(229,436)(230,441)(231,434)
(232,439)(233,435)(234,437)(235,460)(236,465)(237,467)(238,463)(239,468)
(240,461)(241,466)(242,462)(243,464)(244,451)(245,456)(246,458)(247,454)
(248,459)(249,452)(250,457)(251,453)(252,455)(253,478)(254,483)(255,485)
(256,481)(257,486)(258,479)(259,484)(260,480)(261,482)(262,469)(263,474)
(264,476)(265,472)(266,477)(267,470)(268,475)(269,471)(270,473)(271,496)
(272,501)(273,503)(274,499)(275,504)(276,497)(277,502)(278,498)(279,500)
(280,487)(281,492)(282,494)(283,490)(284,495)(285,488)(286,493)(287,489)
(288,491);
s1 := Sym(576)!( 1,145)( 2,147)( 3,146)( 4,149)( 5,148)( 6,150)( 7,153)
( 8,152)( 9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)
( 16,162)( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)
( 24,168)( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)
( 32,175)( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)
( 40,185)( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)
( 48,191)( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)
( 56,201)( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)
( 64,208)( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)
( 72,214)( 73,217)( 74,219)( 75,218)( 76,221)( 77,220)( 78,222)( 79,225)
( 80,224)( 81,223)( 82,226)( 83,228)( 84,227)( 85,230)( 86,229)( 87,231)
( 88,234)( 89,233)( 90,232)( 91,235)( 92,237)( 93,236)( 94,239)( 95,238)
( 96,240)( 97,243)( 98,242)( 99,241)(100,244)(101,246)(102,245)(103,248)
(104,247)(105,249)(106,252)(107,251)(108,250)(109,253)(110,255)(111,254)
(112,257)(113,256)(114,258)(115,261)(116,260)(117,259)(118,262)(119,264)
(120,263)(121,266)(122,265)(123,267)(124,270)(125,269)(126,268)(127,271)
(128,273)(129,272)(130,275)(131,274)(132,276)(133,279)(134,278)(135,277)
(136,280)(137,282)(138,281)(139,284)(140,283)(141,285)(142,288)(143,287)
(144,286)(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)
(296,440)(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)
(304,450)(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)
(312,456)(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)
(320,463)(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)
(328,473)(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)
(336,479)(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)
(344,489)(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)
(352,496)(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)
(360,502)(361,505)(362,507)(363,506)(364,509)(365,508)(366,510)(367,513)
(368,512)(369,511)(370,514)(371,516)(372,515)(373,518)(374,517)(375,519)
(376,522)(377,521)(378,520)(379,523)(380,525)(381,524)(382,527)(383,526)
(384,528)(385,531)(386,530)(387,529)(388,532)(389,534)(390,533)(391,536)
(392,535)(393,537)(394,540)(395,539)(396,538)(397,541)(398,543)(399,542)
(400,545)(401,544)(402,546)(403,549)(404,548)(405,547)(406,550)(407,552)
(408,551)(409,554)(410,553)(411,555)(412,558)(413,557)(414,556)(415,559)
(416,561)(417,560)(418,563)(419,562)(420,564)(421,567)(422,566)(423,565)
(424,568)(425,570)(426,569)(427,572)(428,571)(429,573)(430,576)(431,575)
(432,574);
s2 := Sym(576)!( 1, 13)( 2, 15)( 3, 14)( 4, 10)( 5, 12)( 6, 11)( 7, 16)
( 8, 18)( 9, 17)( 19, 31)( 20, 33)( 21, 32)( 22, 28)( 23, 30)( 24, 29)
( 25, 34)( 26, 36)( 27, 35)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)
( 42, 47)( 43, 52)( 44, 54)( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)
( 59, 66)( 60, 65)( 61, 70)( 62, 72)( 63, 71)( 73,121)( 74,123)( 75,122)
( 76,118)( 77,120)( 78,119)( 79,124)( 80,126)( 81,125)( 82,112)( 83,114)
( 84,113)( 85,109)( 86,111)( 87,110)( 88,115)( 89,117)( 90,116)( 91,139)
( 92,141)( 93,140)( 94,136)( 95,138)( 96,137)( 97,142)( 98,144)( 99,143)
(100,130)(101,132)(102,131)(103,127)(104,129)(105,128)(106,133)(107,135)
(108,134)(145,175)(146,177)(147,176)(148,172)(149,174)(150,173)(151,178)
(152,180)(153,179)(154,166)(155,168)(156,167)(157,163)(158,165)(159,164)
(160,169)(161,171)(162,170)(181,211)(182,213)(183,212)(184,208)(185,210)
(186,209)(187,214)(188,216)(189,215)(190,202)(191,204)(192,203)(193,199)
(194,201)(195,200)(196,205)(197,207)(198,206)(217,283)(218,285)(219,284)
(220,280)(221,282)(222,281)(223,286)(224,288)(225,287)(226,274)(227,276)
(228,275)(229,271)(230,273)(231,272)(232,277)(233,279)(234,278)(235,265)
(236,267)(237,266)(238,262)(239,264)(240,263)(241,268)(242,270)(243,269)
(244,256)(245,258)(246,257)(247,253)(248,255)(249,254)(250,259)(251,261)
(252,260)(289,337)(290,339)(291,338)(292,334)(293,336)(294,335)(295,340)
(296,342)(297,341)(298,328)(299,330)(300,329)(301,325)(302,327)(303,326)
(304,331)(305,333)(306,332)(307,355)(308,357)(309,356)(310,352)(311,354)
(312,353)(313,358)(314,360)(315,359)(316,346)(317,348)(318,347)(319,343)
(320,345)(321,344)(322,349)(323,351)(324,350)(361,373)(362,375)(363,374)
(364,370)(365,372)(366,371)(367,376)(368,378)(369,377)(379,391)(380,393)
(381,392)(382,388)(383,390)(384,389)(385,394)(386,396)(387,395)(397,409)
(398,411)(399,410)(400,406)(401,408)(402,407)(403,412)(404,414)(405,413)
(415,427)(416,429)(417,428)(418,424)(419,426)(420,425)(421,430)(422,432)
(423,431)(433,499)(434,501)(435,500)(436,496)(437,498)(438,497)(439,502)
(440,504)(441,503)(442,490)(443,492)(444,491)(445,487)(446,489)(447,488)
(448,493)(449,495)(450,494)(451,481)(452,483)(453,482)(454,478)(455,480)
(456,479)(457,484)(458,486)(459,485)(460,472)(461,474)(462,473)(463,469)
(464,471)(465,470)(466,475)(467,477)(468,476)(505,535)(506,537)(507,536)
(508,532)(509,534)(510,533)(511,538)(512,540)(513,539)(514,526)(515,528)
(516,527)(517,523)(518,525)(519,524)(520,529)(521,531)(522,530)(541,571)
(542,573)(543,572)(544,568)(545,570)(546,569)(547,574)(548,576)(549,575)
(550,562)(551,564)(552,563)(553,559)(554,561)(555,560)(556,565)(557,567)
(558,566);
s3 := Sym(576)!( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 77)( 6, 78)( 7, 79)
( 8, 80)( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)
( 16, 88)( 17, 89)( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)
( 24, 96)( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)
( 32,104)( 33,105)( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)
( 40,112)( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)
( 48,120)( 49,121)( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)
( 56,128)( 57,129)( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)
( 64,136)( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)
( 72,144)(145,217)(146,218)(147,219)(148,220)(149,221)(150,222)(151,223)
(152,224)(153,225)(154,226)(155,227)(156,228)(157,229)(158,230)(159,231)
(160,232)(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)
(168,240)(169,241)(170,242)(171,243)(172,244)(173,245)(174,246)(175,247)
(176,248)(177,249)(178,250)(179,251)(180,252)(181,253)(182,254)(183,255)
(184,256)(185,257)(186,258)(187,259)(188,260)(189,261)(190,262)(191,263)
(192,264)(193,265)(194,266)(195,267)(196,268)(197,269)(198,270)(199,271)
(200,272)(201,273)(202,274)(203,275)(204,276)(205,277)(206,278)(207,279)
(208,280)(209,281)(210,282)(211,283)(212,284)(213,285)(214,286)(215,287)
(216,288)(289,361)(290,362)(291,363)(292,364)(293,365)(294,366)(295,367)
(296,368)(297,369)(298,370)(299,371)(300,372)(301,373)(302,374)(303,375)
(304,376)(305,377)(306,378)(307,379)(308,380)(309,381)(310,382)(311,383)
(312,384)(313,385)(314,386)(315,387)(316,388)(317,389)(318,390)(319,391)
(320,392)(321,393)(322,394)(323,395)(324,396)(325,397)(326,398)(327,399)
(328,400)(329,401)(330,402)(331,403)(332,404)(333,405)(334,406)(335,407)
(336,408)(337,409)(338,410)(339,411)(340,412)(341,413)(342,414)(343,415)
(344,416)(345,417)(346,418)(347,419)(348,420)(349,421)(350,422)(351,423)
(352,424)(353,425)(354,426)(355,427)(356,428)(357,429)(358,430)(359,431)
(360,432)(433,505)(434,506)(435,507)(436,508)(437,509)(438,510)(439,511)
(440,512)(441,513)(442,514)(443,515)(444,516)(445,517)(446,518)(447,519)
(448,520)(449,521)(450,522)(451,523)(452,524)(453,525)(454,526)(455,527)
(456,528)(457,529)(458,530)(459,531)(460,532)(461,533)(462,534)(463,535)
(464,536)(465,537)(466,538)(467,539)(468,540)(469,541)(470,542)(471,543)
(472,544)(473,545)(474,546)(475,547)(476,548)(477,549)(478,550)(479,551)
(480,552)(481,553)(482,554)(483,555)(484,556)(485,557)(486,558)(487,559)
(488,560)(489,561)(490,562)(491,563)(492,564)(493,565)(494,566)(495,567)
(496,568)(497,569)(498,570)(499,571)(500,572)(501,573)(502,574)(503,575)
(504,576);
poly := sub<Sym(576)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
References : None.
to this polytope