Polytope of Type {12,24,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,24,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,97547)
Rank : 4
Schlafli Type : {12,24,2}
Number of vertices, edges, etc : 12, 144, 24, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,24,2}*576b, {12,12,2}*576b
   3-fold quotients : {4,24,2}*384a
   4-fold quotients : {6,12,2}*288b, {12,6,2}*288c
   6-fold quotients : {4,12,2}*192a, {2,24,2}*192
   8-fold quotients : {6,6,2}*144b
   9-fold quotients : {4,8,2}*128a
   12-fold quotients : {2,12,2}*96, {4,6,2}*96a
   16-fold quotients : {6,3,2}*72
   18-fold quotients : {4,4,2}*64, {2,8,2}*64
   24-fold quotients : {2,6,2}*48
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)( 47, 48)
( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)( 71, 72)
( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 97)( 80, 99)
( 81, 98)( 82,100)( 83,102)( 84,101)( 85,103)( 86,105)( 87,104)( 88,106)
( 89,108)( 90,107)(109,127)(110,129)(111,128)(112,130)(113,132)(114,131)
(115,133)(116,135)(117,134)(118,136)(119,138)(120,137)(121,139)(122,141)
(123,140)(124,142)(125,144)(126,143);;
s1 := (  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)(  8, 76)
(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)( 16, 86)
( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)( 24, 99)
( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)( 32,106)
( 33,108)( 34,104)( 35,103)( 36,105)( 37,119)( 38,118)( 39,120)( 40,125)
( 41,124)( 42,126)( 43,122)( 44,121)( 45,123)( 46,110)( 47,109)( 48,111)
( 49,116)( 50,115)( 51,117)( 52,113)( 53,112)( 54,114)( 55,137)( 56,136)
( 57,138)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)( 64,128)
( 65,127)( 66,129)( 67,134)( 68,133)( 69,135)( 70,131)( 71,130)( 72,132);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)( 44, 54)
( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)( 61, 70)
( 62, 72)( 63, 71)( 73,130)( 74,132)( 75,131)( 76,127)( 77,129)( 78,128)
( 79,133)( 80,135)( 81,134)( 82,139)( 83,141)( 84,140)( 85,136)( 86,138)
( 87,137)( 88,142)( 89,144)( 90,143)( 91,112)( 92,114)( 93,113)( 94,109)
( 95,111)( 96,110)( 97,115)( 98,117)( 99,116)(100,121)(101,123)(102,122)
(103,118)(104,120)(105,119)(106,124)(107,126)(108,125);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)
( 47, 48)( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)
( 71, 72)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)( 79, 97)
( 80, 99)( 81, 98)( 82,100)( 83,102)( 84,101)( 85,103)( 86,105)( 87,104)
( 88,106)( 89,108)( 90,107)(109,127)(110,129)(111,128)(112,130)(113,132)
(114,131)(115,133)(116,135)(117,134)(118,136)(119,138)(120,137)(121,139)
(122,141)(123,140)(124,142)(125,144)(126,143);
s1 := Sym(146)!(  1, 74)(  2, 73)(  3, 75)(  4, 80)(  5, 79)(  6, 81)(  7, 77)
(  8, 76)(  9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)
( 16, 86)( 17, 85)( 18, 87)( 19, 92)( 20, 91)( 21, 93)( 22, 98)( 23, 97)
( 24, 99)( 25, 95)( 26, 94)( 27, 96)( 28,101)( 29,100)( 30,102)( 31,107)
( 32,106)( 33,108)( 34,104)( 35,103)( 36,105)( 37,119)( 38,118)( 39,120)
( 40,125)( 41,124)( 42,126)( 43,122)( 44,121)( 45,123)( 46,110)( 47,109)
( 48,111)( 49,116)( 50,115)( 51,117)( 52,113)( 53,112)( 54,114)( 55,137)
( 56,136)( 57,138)( 58,143)( 59,142)( 60,144)( 61,140)( 62,139)( 63,141)
( 64,128)( 65,127)( 66,129)( 67,134)( 68,133)( 69,135)( 70,131)( 71,130)
( 72,132);
s2 := Sym(146)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)
( 44, 54)( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73,130)( 74,132)( 75,131)( 76,127)( 77,129)
( 78,128)( 79,133)( 80,135)( 81,134)( 82,139)( 83,141)( 84,140)( 85,136)
( 86,138)( 87,137)( 88,142)( 89,144)( 90,143)( 91,112)( 92,114)( 93,113)
( 94,109)( 95,111)( 96,110)( 97,115)( 98,117)( 99,116)(100,121)(101,123)
(102,122)(103,118)(104,120)(105,119)(106,124)(107,126)(108,125);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope