include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,24}*1152c
if this polytope has a name.
Group : SmallGroup(1152,97551)
Rank : 4
Schlafli Type : {2,12,24}
Number of vertices, edges, etc : 2, 12, 144, 24
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,12,12}*576c, {2,6,24}*576c
3-fold quotients : {2,12,8}*384a
4-fold quotients : {2,12,6}*288b, {2,6,12}*288c
6-fold quotients : {2,12,4}*192a, {2,6,8}*192
8-fold quotients : {2,6,6}*144c
9-fold quotients : {2,4,8}*128a
12-fold quotients : {2,12,2}*96, {2,6,4}*96a
16-fold quotients : {2,3,6}*72
18-fold quotients : {2,4,4}*64, {2,2,8}*64
24-fold quotients : {2,6,2}*48
36-fold quotients : {2,2,4}*32, {2,4,2}*32
48-fold quotients : {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 75, 93)( 76, 95)( 77, 94)( 78, 99)( 79,101)( 80,100)( 81, 96)( 82, 98)
( 83, 97)( 84,102)( 85,104)( 86,103)( 87,108)( 88,110)( 89,109)( 90,105)
( 91,107)( 92,106)(111,129)(112,131)(113,130)(114,135)(115,137)(116,136)
(117,132)(118,134)(119,133)(120,138)(121,140)(122,139)(123,144)(124,146)
(125,145)(126,141)(127,143)(128,142);;
s2 := ( 3, 79)( 4, 78)( 5, 80)( 6, 76)( 7, 75)( 8, 77)( 9, 82)( 10, 81)
( 11, 83)( 12, 88)( 13, 87)( 14, 89)( 15, 85)( 16, 84)( 17, 86)( 18, 91)
( 19, 90)( 20, 92)( 21, 97)( 22, 96)( 23, 98)( 24, 94)( 25, 93)( 26, 95)
( 27,100)( 28, 99)( 29,101)( 30,106)( 31,105)( 32,107)( 33,103)( 34,102)
( 35,104)( 36,109)( 37,108)( 38,110)( 39,124)( 40,123)( 41,125)( 42,121)
( 43,120)( 44,122)( 45,127)( 46,126)( 47,128)( 48,115)( 49,114)( 50,116)
( 51,112)( 52,111)( 53,113)( 54,118)( 55,117)( 56,119)( 57,142)( 58,141)
( 59,143)( 60,139)( 61,138)( 62,140)( 63,145)( 64,144)( 65,146)( 66,133)
( 67,132)( 68,134)( 69,130)( 70,129)( 71,131)( 72,136)( 73,135)( 74,137);;
s3 := ( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)( 25, 26)
( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 39, 48)( 40, 50)( 41, 49)( 42, 51)
( 43, 53)( 44, 52)( 45, 54)( 46, 56)( 47, 55)( 57, 66)( 58, 68)( 59, 67)
( 60, 69)( 61, 71)( 62, 70)( 63, 72)( 64, 74)( 65, 73)( 75,111)( 76,113)
( 77,112)( 78,114)( 79,116)( 80,115)( 81,117)( 82,119)( 83,118)( 84,120)
( 85,122)( 86,121)( 87,123)( 88,125)( 89,124)( 90,126)( 91,128)( 92,127)
( 93,129)( 94,131)( 95,130)( 96,132)( 97,134)( 98,133)( 99,135)(100,137)
(101,136)(102,138)(103,140)(104,139)(105,141)(106,143)(107,142)(108,144)
(109,146)(110,145);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 75, 93)( 76, 95)( 77, 94)( 78, 99)( 79,101)( 80,100)( 81, 96)
( 82, 98)( 83, 97)( 84,102)( 85,104)( 86,103)( 87,108)( 88,110)( 89,109)
( 90,105)( 91,107)( 92,106)(111,129)(112,131)(113,130)(114,135)(115,137)
(116,136)(117,132)(118,134)(119,133)(120,138)(121,140)(122,139)(123,144)
(124,146)(125,145)(126,141)(127,143)(128,142);
s2 := Sym(146)!( 3, 79)( 4, 78)( 5, 80)( 6, 76)( 7, 75)( 8, 77)( 9, 82)
( 10, 81)( 11, 83)( 12, 88)( 13, 87)( 14, 89)( 15, 85)( 16, 84)( 17, 86)
( 18, 91)( 19, 90)( 20, 92)( 21, 97)( 22, 96)( 23, 98)( 24, 94)( 25, 93)
( 26, 95)( 27,100)( 28, 99)( 29,101)( 30,106)( 31,105)( 32,107)( 33,103)
( 34,102)( 35,104)( 36,109)( 37,108)( 38,110)( 39,124)( 40,123)( 41,125)
( 42,121)( 43,120)( 44,122)( 45,127)( 46,126)( 47,128)( 48,115)( 49,114)
( 50,116)( 51,112)( 52,111)( 53,113)( 54,118)( 55,117)( 56,119)( 57,142)
( 58,141)( 59,143)( 60,139)( 61,138)( 62,140)( 63,145)( 64,144)( 65,146)
( 66,133)( 67,132)( 68,134)( 69,130)( 70,129)( 71,131)( 72,136)( 73,135)
( 74,137);
s3 := Sym(146)!( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)
( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 39, 48)( 40, 50)( 41, 49)
( 42, 51)( 43, 53)( 44, 52)( 45, 54)( 46, 56)( 47, 55)( 57, 66)( 58, 68)
( 59, 67)( 60, 69)( 61, 71)( 62, 70)( 63, 72)( 64, 74)( 65, 73)( 75,111)
( 76,113)( 77,112)( 78,114)( 79,116)( 80,115)( 81,117)( 82,119)( 83,118)
( 84,120)( 85,122)( 86,121)( 87,123)( 88,125)( 89,124)( 90,126)( 91,128)
( 92,127)( 93,129)( 94,131)( 95,130)( 96,132)( 97,134)( 98,133)( 99,135)
(100,137)(101,136)(102,138)(103,140)(104,139)(105,141)(106,143)(107,142)
(108,144)(109,146)(110,145);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope