Polytope of Type {8,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4,6}*1152a
Also Known As : {{8,4|2},{4,6}4}. if this polytope has another name.
Group : SmallGroup(1152,97552)
Rank : 4
Schlafli Type : {8,4,6}
Number of vertices, edges, etc : 8, 48, 36, 18
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,4,6}*576, {4,4,6}*576
   4-fold quotients : {4,4,6}*288, {2,4,6}*288
   8-fold quotients : {2,4,6}*144
   9-fold quotients : {8,4,2}*128a
   18-fold quotients : {4,4,2}*64, {8,2,2}*64
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)(  8,296)
(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)( 16,304)
( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)( 24,312)
( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)( 32,320)
( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)( 40,337)
( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)( 48,327)
( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)( 56,353)
( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)( 64,343)
( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)( 72,351)
( 73,361)( 74,362)( 75,363)( 76,364)( 77,365)( 78,366)( 79,367)( 80,368)
( 81,369)( 82,370)( 83,371)( 84,372)( 85,373)( 86,374)( 87,375)( 88,376)
( 89,377)( 90,378)( 91,379)( 92,380)( 93,381)( 94,382)( 95,383)( 96,384)
( 97,385)( 98,386)( 99,387)(100,388)(101,389)(102,390)(103,391)(104,392)
(105,393)(106,394)(107,395)(108,396)(109,406)(110,407)(111,408)(112,409)
(113,410)(114,411)(115,412)(116,413)(117,414)(118,397)(119,398)(120,399)
(121,400)(122,401)(123,402)(124,403)(125,404)(126,405)(127,424)(128,425)
(129,426)(130,427)(131,428)(132,429)(133,430)(134,431)(135,432)(136,415)
(137,416)(138,417)(139,418)(140,419)(141,420)(142,421)(143,422)(144,423)
(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)(152,440)
(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)(160,448)
(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)(168,456)
(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)(176,464)
(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)(184,481)
(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)(192,471)
(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)(200,497)
(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)(208,487)
(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)(216,495)
(217,505)(218,506)(219,507)(220,508)(221,509)(222,510)(223,511)(224,512)
(225,513)(226,514)(227,515)(228,516)(229,517)(230,518)(231,519)(232,520)
(233,521)(234,522)(235,523)(236,524)(237,525)(238,526)(239,527)(240,528)
(241,529)(242,530)(243,531)(244,532)(245,533)(246,534)(247,535)(248,536)
(249,537)(250,538)(251,539)(252,540)(253,550)(254,551)(255,552)(256,553)
(257,554)(258,555)(259,556)(260,557)(261,558)(262,541)(263,542)(264,543)
(265,544)(266,545)(267,546)(268,547)(269,548)(270,549)(271,568)(272,569)
(273,570)(274,571)(275,572)(276,573)(277,574)(278,575)(279,576)(280,559)
(281,560)(282,561)(283,562)(284,563)(285,564)(286,565)(287,566)(288,567);;
s1 := (  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)( 40, 49)
( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)( 57, 71)
( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 74, 78)( 75, 80)
( 77, 81)( 83, 87)( 84, 89)( 86, 90)( 92, 96)( 93, 98)( 95, 99)(101,105)
(102,107)(104,108)(109,118)(110,123)(111,125)(112,121)(113,126)(114,119)
(115,124)(116,120)(117,122)(127,136)(128,141)(129,143)(130,139)(131,144)
(132,137)(133,142)(134,138)(135,140)(145,163)(146,168)(147,170)(148,166)
(149,171)(150,164)(151,169)(152,165)(153,167)(154,172)(155,177)(156,179)
(157,175)(158,180)(159,173)(160,178)(161,174)(162,176)(181,208)(182,213)
(183,215)(184,211)(185,216)(186,209)(187,214)(188,210)(189,212)(190,199)
(191,204)(192,206)(193,202)(194,207)(195,200)(196,205)(197,201)(198,203)
(217,235)(218,240)(219,242)(220,238)(221,243)(222,236)(223,241)(224,237)
(225,239)(226,244)(227,249)(228,251)(229,247)(230,252)(231,245)(232,250)
(233,246)(234,248)(253,280)(254,285)(255,287)(256,283)(257,288)(258,281)
(259,286)(260,282)(261,284)(262,271)(263,276)(264,278)(265,274)(266,279)
(267,272)(268,277)(269,273)(270,275)(289,325)(290,330)(291,332)(292,328)
(293,333)(294,326)(295,331)(296,327)(297,329)(298,334)(299,339)(300,341)
(301,337)(302,342)(303,335)(304,340)(305,336)(306,338)(307,343)(308,348)
(309,350)(310,346)(311,351)(312,344)(313,349)(314,345)(315,347)(316,352)
(317,357)(318,359)(319,355)(320,360)(321,353)(322,358)(323,354)(324,356)
(361,397)(362,402)(363,404)(364,400)(365,405)(366,398)(367,403)(368,399)
(369,401)(370,406)(371,411)(372,413)(373,409)(374,414)(375,407)(376,412)
(377,408)(378,410)(379,415)(380,420)(381,422)(382,418)(383,423)(384,416)
(385,421)(386,417)(387,419)(388,424)(389,429)(390,431)(391,427)(392,432)
(393,425)(394,430)(395,426)(396,428)(433,487)(434,492)(435,494)(436,490)
(437,495)(438,488)(439,493)(440,489)(441,491)(442,496)(443,501)(444,503)
(445,499)(446,504)(447,497)(448,502)(449,498)(450,500)(451,469)(452,474)
(453,476)(454,472)(455,477)(456,470)(457,475)(458,471)(459,473)(460,478)
(461,483)(462,485)(463,481)(464,486)(465,479)(466,484)(467,480)(468,482)
(505,559)(506,564)(507,566)(508,562)(509,567)(510,560)(511,565)(512,561)
(513,563)(514,568)(515,573)(516,575)(517,571)(518,576)(519,569)(520,574)
(521,570)(522,572)(523,541)(524,546)(525,548)(526,544)(527,549)(528,542)
(529,547)(530,543)(531,545)(532,550)(533,555)(534,557)(535,553)(536,558)
(537,551)(538,556)(539,552)(540,554);;
s2 := (  1,145)(  2,147)(  3,146)(  4,149)(  5,148)(  6,150)(  7,153)(  8,152)
(  9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)( 16,162)
( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)( 24,168)
( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)( 32,175)
( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)( 40,185)
( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)( 48,191)
( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)( 56,201)
( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)( 64,208)
( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)( 72,214)
( 73,217)( 74,219)( 75,218)( 76,221)( 77,220)( 78,222)( 79,225)( 80,224)
( 81,223)( 82,226)( 83,228)( 84,227)( 85,230)( 86,229)( 87,231)( 88,234)
( 89,233)( 90,232)( 91,235)( 92,237)( 93,236)( 94,239)( 95,238)( 96,240)
( 97,243)( 98,242)( 99,241)(100,244)(101,246)(102,245)(103,248)(104,247)
(105,249)(106,252)(107,251)(108,250)(109,253)(110,255)(111,254)(112,257)
(113,256)(114,258)(115,261)(116,260)(117,259)(118,262)(119,264)(120,263)
(121,266)(122,265)(123,267)(124,270)(125,269)(126,268)(127,271)(128,273)
(129,272)(130,275)(131,274)(132,276)(133,279)(134,278)(135,277)(136,280)
(137,282)(138,281)(139,284)(140,283)(141,285)(142,288)(143,287)(144,286)
(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)(296,440)
(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)(304,450)
(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)(312,456)
(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)(320,463)
(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)(328,473)
(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)(336,479)
(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)(344,489)
(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)(352,496)
(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)(360,502)
(361,505)(362,507)(363,506)(364,509)(365,508)(366,510)(367,513)(368,512)
(369,511)(370,514)(371,516)(372,515)(373,518)(374,517)(375,519)(376,522)
(377,521)(378,520)(379,523)(380,525)(381,524)(382,527)(383,526)(384,528)
(385,531)(386,530)(387,529)(388,532)(389,534)(390,533)(391,536)(392,535)
(393,537)(394,540)(395,539)(396,538)(397,541)(398,543)(399,542)(400,545)
(401,544)(402,546)(403,549)(404,548)(405,547)(406,550)(407,552)(408,551)
(409,554)(410,553)(411,555)(412,558)(413,557)(414,556)(415,559)(416,561)
(417,560)(418,563)(419,562)(420,564)(421,567)(422,566)(423,565)(424,568)
(425,570)(426,569)(427,572)(428,571)(429,573)(430,576)(431,575)(432,574);;
s3 := (  1, 94)(  2, 96)(  3, 95)(  4, 91)(  5, 93)(  6, 92)(  7, 97)(  8, 99)
(  9, 98)( 10,103)( 11,105)( 12,104)( 13,100)( 14,102)( 15,101)( 16,106)
( 17,108)( 18,107)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)( 24, 74)
( 25, 79)( 26, 81)( 27, 80)( 28, 85)( 29, 87)( 30, 86)( 31, 82)( 32, 84)
( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37,130)( 38,132)( 39,131)( 40,127)
( 41,129)( 42,128)( 43,133)( 44,135)( 45,134)( 46,139)( 47,141)( 48,140)
( 49,136)( 50,138)( 51,137)( 52,142)( 53,144)( 54,143)( 55,112)( 56,114)
( 57,113)( 58,109)( 59,111)( 60,110)( 61,115)( 62,117)( 63,116)( 64,121)
( 65,123)( 66,122)( 67,118)( 68,120)( 69,119)( 70,124)( 71,126)( 72,125)
(145,238)(146,240)(147,239)(148,235)(149,237)(150,236)(151,241)(152,243)
(153,242)(154,247)(155,249)(156,248)(157,244)(158,246)(159,245)(160,250)
(161,252)(162,251)(163,220)(164,222)(165,221)(166,217)(167,219)(168,218)
(169,223)(170,225)(171,224)(172,229)(173,231)(174,230)(175,226)(176,228)
(177,227)(178,232)(179,234)(180,233)(181,274)(182,276)(183,275)(184,271)
(185,273)(186,272)(187,277)(188,279)(189,278)(190,283)(191,285)(192,284)
(193,280)(194,282)(195,281)(196,286)(197,288)(198,287)(199,256)(200,258)
(201,257)(202,253)(203,255)(204,254)(205,259)(206,261)(207,260)(208,265)
(209,267)(210,266)(211,262)(212,264)(213,263)(214,268)(215,270)(216,269)
(289,382)(290,384)(291,383)(292,379)(293,381)(294,380)(295,385)(296,387)
(297,386)(298,391)(299,393)(300,392)(301,388)(302,390)(303,389)(304,394)
(305,396)(306,395)(307,364)(308,366)(309,365)(310,361)(311,363)(312,362)
(313,367)(314,369)(315,368)(316,373)(317,375)(318,374)(319,370)(320,372)
(321,371)(322,376)(323,378)(324,377)(325,418)(326,420)(327,419)(328,415)
(329,417)(330,416)(331,421)(332,423)(333,422)(334,427)(335,429)(336,428)
(337,424)(338,426)(339,425)(340,430)(341,432)(342,431)(343,400)(344,402)
(345,401)(346,397)(347,399)(348,398)(349,403)(350,405)(351,404)(352,409)
(353,411)(354,410)(355,406)(356,408)(357,407)(358,412)(359,414)(360,413)
(433,526)(434,528)(435,527)(436,523)(437,525)(438,524)(439,529)(440,531)
(441,530)(442,535)(443,537)(444,536)(445,532)(446,534)(447,533)(448,538)
(449,540)(450,539)(451,508)(452,510)(453,509)(454,505)(455,507)(456,506)
(457,511)(458,513)(459,512)(460,517)(461,519)(462,518)(463,514)(464,516)
(465,515)(466,520)(467,522)(468,521)(469,562)(470,564)(471,563)(472,559)
(473,561)(474,560)(475,565)(476,567)(477,566)(478,571)(479,573)(480,572)
(481,568)(482,570)(483,569)(484,574)(485,576)(486,575)(487,544)(488,546)
(489,545)(490,541)(491,543)(492,542)(493,547)(494,549)(495,548)(496,553)
(497,555)(498,554)(499,550)(500,552)(501,551)(502,556)(503,558)(504,557);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,289)(  2,290)(  3,291)(  4,292)(  5,293)(  6,294)(  7,295)
(  8,296)(  9,297)( 10,298)( 11,299)( 12,300)( 13,301)( 14,302)( 15,303)
( 16,304)( 17,305)( 18,306)( 19,307)( 20,308)( 21,309)( 22,310)( 23,311)
( 24,312)( 25,313)( 26,314)( 27,315)( 28,316)( 29,317)( 30,318)( 31,319)
( 32,320)( 33,321)( 34,322)( 35,323)( 36,324)( 37,334)( 38,335)( 39,336)
( 40,337)( 41,338)( 42,339)( 43,340)( 44,341)( 45,342)( 46,325)( 47,326)
( 48,327)( 49,328)( 50,329)( 51,330)( 52,331)( 53,332)( 54,333)( 55,352)
( 56,353)( 57,354)( 58,355)( 59,356)( 60,357)( 61,358)( 62,359)( 63,360)
( 64,343)( 65,344)( 66,345)( 67,346)( 68,347)( 69,348)( 70,349)( 71,350)
( 72,351)( 73,361)( 74,362)( 75,363)( 76,364)( 77,365)( 78,366)( 79,367)
( 80,368)( 81,369)( 82,370)( 83,371)( 84,372)( 85,373)( 86,374)( 87,375)
( 88,376)( 89,377)( 90,378)( 91,379)( 92,380)( 93,381)( 94,382)( 95,383)
( 96,384)( 97,385)( 98,386)( 99,387)(100,388)(101,389)(102,390)(103,391)
(104,392)(105,393)(106,394)(107,395)(108,396)(109,406)(110,407)(111,408)
(112,409)(113,410)(114,411)(115,412)(116,413)(117,414)(118,397)(119,398)
(120,399)(121,400)(122,401)(123,402)(124,403)(125,404)(126,405)(127,424)
(128,425)(129,426)(130,427)(131,428)(132,429)(133,430)(134,431)(135,432)
(136,415)(137,416)(138,417)(139,418)(140,419)(141,420)(142,421)(143,422)
(144,423)(145,433)(146,434)(147,435)(148,436)(149,437)(150,438)(151,439)
(152,440)(153,441)(154,442)(155,443)(156,444)(157,445)(158,446)(159,447)
(160,448)(161,449)(162,450)(163,451)(164,452)(165,453)(166,454)(167,455)
(168,456)(169,457)(170,458)(171,459)(172,460)(173,461)(174,462)(175,463)
(176,464)(177,465)(178,466)(179,467)(180,468)(181,478)(182,479)(183,480)
(184,481)(185,482)(186,483)(187,484)(188,485)(189,486)(190,469)(191,470)
(192,471)(193,472)(194,473)(195,474)(196,475)(197,476)(198,477)(199,496)
(200,497)(201,498)(202,499)(203,500)(204,501)(205,502)(206,503)(207,504)
(208,487)(209,488)(210,489)(211,490)(212,491)(213,492)(214,493)(215,494)
(216,495)(217,505)(218,506)(219,507)(220,508)(221,509)(222,510)(223,511)
(224,512)(225,513)(226,514)(227,515)(228,516)(229,517)(230,518)(231,519)
(232,520)(233,521)(234,522)(235,523)(236,524)(237,525)(238,526)(239,527)
(240,528)(241,529)(242,530)(243,531)(244,532)(245,533)(246,534)(247,535)
(248,536)(249,537)(250,538)(251,539)(252,540)(253,550)(254,551)(255,552)
(256,553)(257,554)(258,555)(259,556)(260,557)(261,558)(262,541)(263,542)
(264,543)(265,544)(266,545)(267,546)(268,547)(269,548)(270,549)(271,568)
(272,569)(273,570)(274,571)(275,572)(276,573)(277,574)(278,575)(279,576)
(280,559)(281,560)(282,561)(283,562)(284,563)(285,564)(286,565)(287,566)
(288,567);
s1 := Sym(576)!(  2,  6)(  3,  8)(  5,  9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)
( 21, 26)( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 37, 46)( 38, 51)( 39, 53)
( 40, 49)( 41, 54)( 42, 47)( 43, 52)( 44, 48)( 45, 50)( 55, 64)( 56, 69)
( 57, 71)( 58, 67)( 59, 72)( 60, 65)( 61, 70)( 62, 66)( 63, 68)( 74, 78)
( 75, 80)( 77, 81)( 83, 87)( 84, 89)( 86, 90)( 92, 96)( 93, 98)( 95, 99)
(101,105)(102,107)(104,108)(109,118)(110,123)(111,125)(112,121)(113,126)
(114,119)(115,124)(116,120)(117,122)(127,136)(128,141)(129,143)(130,139)
(131,144)(132,137)(133,142)(134,138)(135,140)(145,163)(146,168)(147,170)
(148,166)(149,171)(150,164)(151,169)(152,165)(153,167)(154,172)(155,177)
(156,179)(157,175)(158,180)(159,173)(160,178)(161,174)(162,176)(181,208)
(182,213)(183,215)(184,211)(185,216)(186,209)(187,214)(188,210)(189,212)
(190,199)(191,204)(192,206)(193,202)(194,207)(195,200)(196,205)(197,201)
(198,203)(217,235)(218,240)(219,242)(220,238)(221,243)(222,236)(223,241)
(224,237)(225,239)(226,244)(227,249)(228,251)(229,247)(230,252)(231,245)
(232,250)(233,246)(234,248)(253,280)(254,285)(255,287)(256,283)(257,288)
(258,281)(259,286)(260,282)(261,284)(262,271)(263,276)(264,278)(265,274)
(266,279)(267,272)(268,277)(269,273)(270,275)(289,325)(290,330)(291,332)
(292,328)(293,333)(294,326)(295,331)(296,327)(297,329)(298,334)(299,339)
(300,341)(301,337)(302,342)(303,335)(304,340)(305,336)(306,338)(307,343)
(308,348)(309,350)(310,346)(311,351)(312,344)(313,349)(314,345)(315,347)
(316,352)(317,357)(318,359)(319,355)(320,360)(321,353)(322,358)(323,354)
(324,356)(361,397)(362,402)(363,404)(364,400)(365,405)(366,398)(367,403)
(368,399)(369,401)(370,406)(371,411)(372,413)(373,409)(374,414)(375,407)
(376,412)(377,408)(378,410)(379,415)(380,420)(381,422)(382,418)(383,423)
(384,416)(385,421)(386,417)(387,419)(388,424)(389,429)(390,431)(391,427)
(392,432)(393,425)(394,430)(395,426)(396,428)(433,487)(434,492)(435,494)
(436,490)(437,495)(438,488)(439,493)(440,489)(441,491)(442,496)(443,501)
(444,503)(445,499)(446,504)(447,497)(448,502)(449,498)(450,500)(451,469)
(452,474)(453,476)(454,472)(455,477)(456,470)(457,475)(458,471)(459,473)
(460,478)(461,483)(462,485)(463,481)(464,486)(465,479)(466,484)(467,480)
(468,482)(505,559)(506,564)(507,566)(508,562)(509,567)(510,560)(511,565)
(512,561)(513,563)(514,568)(515,573)(516,575)(517,571)(518,576)(519,569)
(520,574)(521,570)(522,572)(523,541)(524,546)(525,548)(526,544)(527,549)
(528,542)(529,547)(530,543)(531,545)(532,550)(533,555)(534,557)(535,553)
(536,558)(537,551)(538,556)(539,552)(540,554);
s2 := Sym(576)!(  1,145)(  2,147)(  3,146)(  4,149)(  5,148)(  6,150)(  7,153)
(  8,152)(  9,151)( 10,154)( 11,156)( 12,155)( 13,158)( 14,157)( 15,159)
( 16,162)( 17,161)( 18,160)( 19,163)( 20,165)( 21,164)( 22,167)( 23,166)
( 24,168)( 25,171)( 26,170)( 27,169)( 28,172)( 29,174)( 30,173)( 31,176)
( 32,175)( 33,177)( 34,180)( 35,179)( 36,178)( 37,181)( 38,183)( 39,182)
( 40,185)( 41,184)( 42,186)( 43,189)( 44,188)( 45,187)( 46,190)( 47,192)
( 48,191)( 49,194)( 50,193)( 51,195)( 52,198)( 53,197)( 54,196)( 55,199)
( 56,201)( 57,200)( 58,203)( 59,202)( 60,204)( 61,207)( 62,206)( 63,205)
( 64,208)( 65,210)( 66,209)( 67,212)( 68,211)( 69,213)( 70,216)( 71,215)
( 72,214)( 73,217)( 74,219)( 75,218)( 76,221)( 77,220)( 78,222)( 79,225)
( 80,224)( 81,223)( 82,226)( 83,228)( 84,227)( 85,230)( 86,229)( 87,231)
( 88,234)( 89,233)( 90,232)( 91,235)( 92,237)( 93,236)( 94,239)( 95,238)
( 96,240)( 97,243)( 98,242)( 99,241)(100,244)(101,246)(102,245)(103,248)
(104,247)(105,249)(106,252)(107,251)(108,250)(109,253)(110,255)(111,254)
(112,257)(113,256)(114,258)(115,261)(116,260)(117,259)(118,262)(119,264)
(120,263)(121,266)(122,265)(123,267)(124,270)(125,269)(126,268)(127,271)
(128,273)(129,272)(130,275)(131,274)(132,276)(133,279)(134,278)(135,277)
(136,280)(137,282)(138,281)(139,284)(140,283)(141,285)(142,288)(143,287)
(144,286)(289,433)(290,435)(291,434)(292,437)(293,436)(294,438)(295,441)
(296,440)(297,439)(298,442)(299,444)(300,443)(301,446)(302,445)(303,447)
(304,450)(305,449)(306,448)(307,451)(308,453)(309,452)(310,455)(311,454)
(312,456)(313,459)(314,458)(315,457)(316,460)(317,462)(318,461)(319,464)
(320,463)(321,465)(322,468)(323,467)(324,466)(325,469)(326,471)(327,470)
(328,473)(329,472)(330,474)(331,477)(332,476)(333,475)(334,478)(335,480)
(336,479)(337,482)(338,481)(339,483)(340,486)(341,485)(342,484)(343,487)
(344,489)(345,488)(346,491)(347,490)(348,492)(349,495)(350,494)(351,493)
(352,496)(353,498)(354,497)(355,500)(356,499)(357,501)(358,504)(359,503)
(360,502)(361,505)(362,507)(363,506)(364,509)(365,508)(366,510)(367,513)
(368,512)(369,511)(370,514)(371,516)(372,515)(373,518)(374,517)(375,519)
(376,522)(377,521)(378,520)(379,523)(380,525)(381,524)(382,527)(383,526)
(384,528)(385,531)(386,530)(387,529)(388,532)(389,534)(390,533)(391,536)
(392,535)(393,537)(394,540)(395,539)(396,538)(397,541)(398,543)(399,542)
(400,545)(401,544)(402,546)(403,549)(404,548)(405,547)(406,550)(407,552)
(408,551)(409,554)(410,553)(411,555)(412,558)(413,557)(414,556)(415,559)
(416,561)(417,560)(418,563)(419,562)(420,564)(421,567)(422,566)(423,565)
(424,568)(425,570)(426,569)(427,572)(428,571)(429,573)(430,576)(431,575)
(432,574);
s3 := Sym(576)!(  1, 94)(  2, 96)(  3, 95)(  4, 91)(  5, 93)(  6, 92)(  7, 97)
(  8, 99)(  9, 98)( 10,103)( 11,105)( 12,104)( 13,100)( 14,102)( 15,101)
( 16,106)( 17,108)( 18,107)( 19, 76)( 20, 78)( 21, 77)( 22, 73)( 23, 75)
( 24, 74)( 25, 79)( 26, 81)( 27, 80)( 28, 85)( 29, 87)( 30, 86)( 31, 82)
( 32, 84)( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37,130)( 38,132)( 39,131)
( 40,127)( 41,129)( 42,128)( 43,133)( 44,135)( 45,134)( 46,139)( 47,141)
( 48,140)( 49,136)( 50,138)( 51,137)( 52,142)( 53,144)( 54,143)( 55,112)
( 56,114)( 57,113)( 58,109)( 59,111)( 60,110)( 61,115)( 62,117)( 63,116)
( 64,121)( 65,123)( 66,122)( 67,118)( 68,120)( 69,119)( 70,124)( 71,126)
( 72,125)(145,238)(146,240)(147,239)(148,235)(149,237)(150,236)(151,241)
(152,243)(153,242)(154,247)(155,249)(156,248)(157,244)(158,246)(159,245)
(160,250)(161,252)(162,251)(163,220)(164,222)(165,221)(166,217)(167,219)
(168,218)(169,223)(170,225)(171,224)(172,229)(173,231)(174,230)(175,226)
(176,228)(177,227)(178,232)(179,234)(180,233)(181,274)(182,276)(183,275)
(184,271)(185,273)(186,272)(187,277)(188,279)(189,278)(190,283)(191,285)
(192,284)(193,280)(194,282)(195,281)(196,286)(197,288)(198,287)(199,256)
(200,258)(201,257)(202,253)(203,255)(204,254)(205,259)(206,261)(207,260)
(208,265)(209,267)(210,266)(211,262)(212,264)(213,263)(214,268)(215,270)
(216,269)(289,382)(290,384)(291,383)(292,379)(293,381)(294,380)(295,385)
(296,387)(297,386)(298,391)(299,393)(300,392)(301,388)(302,390)(303,389)
(304,394)(305,396)(306,395)(307,364)(308,366)(309,365)(310,361)(311,363)
(312,362)(313,367)(314,369)(315,368)(316,373)(317,375)(318,374)(319,370)
(320,372)(321,371)(322,376)(323,378)(324,377)(325,418)(326,420)(327,419)
(328,415)(329,417)(330,416)(331,421)(332,423)(333,422)(334,427)(335,429)
(336,428)(337,424)(338,426)(339,425)(340,430)(341,432)(342,431)(343,400)
(344,402)(345,401)(346,397)(347,399)(348,398)(349,403)(350,405)(351,404)
(352,409)(353,411)(354,410)(355,406)(356,408)(357,407)(358,412)(359,414)
(360,413)(433,526)(434,528)(435,527)(436,523)(437,525)(438,524)(439,529)
(440,531)(441,530)(442,535)(443,537)(444,536)(445,532)(446,534)(447,533)
(448,538)(449,540)(450,539)(451,508)(452,510)(453,509)(454,505)(455,507)
(456,506)(457,511)(458,513)(459,512)(460,517)(461,519)(462,518)(463,514)
(464,516)(465,515)(466,520)(467,522)(468,521)(469,562)(470,564)(471,563)
(472,559)(473,561)(474,560)(475,565)(476,567)(477,566)(478,571)(479,573)
(480,572)(481,568)(482,570)(483,569)(484,574)(485,576)(486,575)(487,544)
(488,546)(489,545)(490,541)(491,543)(492,542)(493,547)(494,549)(495,548)
(496,553)(497,555)(498,554)(499,550)(500,552)(501,551)(502,556)(503,558)
(504,557);
poly := sub<Sym(576)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope