include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,4,8}*1152
if this polytope has a name.
Group : SmallGroup(1152,97552)
Rank : 5
Schlafli Type : {2,6,4,8}
Number of vertices, edges, etc : 2, 9, 18, 24, 8
Order of s0s1s2s3s4 : 8
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,4,4}*576
4-fold quotients : {2,6,4,2}*288
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)(24,27)
(25,29)(26,28)(31,32)(33,36)(34,38)(35,37)(40,41)(42,45)(43,47)(44,46)(49,50)
(51,54)(52,56)(53,55)(58,59)(60,63)(61,65)(62,64)(67,68)(69,72)(70,74)
(71,73);;
s2 := ( 3, 6)( 4, 7)( 5, 8)(12,15)(13,16)(14,17)(21,24)(22,25)(23,26)(30,33)
(31,34)(32,35)(39,42)(40,43)(41,44)(48,51)(49,52)(50,53)(57,60)(58,61)(59,62)
(66,69)(67,70)(68,71);;
s3 := ( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)(24,31)
(25,34)(26,37)(27,32)(28,35)(29,38)(39,57)(40,60)(41,63)(42,58)(43,61)(44,64)
(45,59)(46,62)(47,65)(48,66)(49,69)(50,72)(51,67)(52,70)(53,73)(54,68)(55,71)
(56,74);;
s4 := ( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)(12,48)
(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,66)(22,67)(23,68)
(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,57)(31,58)(32,59)(33,60)(34,61)
(35,62)(36,63)(37,64)(38,65);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 4, 5)( 6, 9)( 7,11)( 8,10)(13,14)(15,18)(16,20)(17,19)(22,23)
(24,27)(25,29)(26,28)(31,32)(33,36)(34,38)(35,37)(40,41)(42,45)(43,47)(44,46)
(49,50)(51,54)(52,56)(53,55)(58,59)(60,63)(61,65)(62,64)(67,68)(69,72)(70,74)
(71,73);
s2 := Sym(74)!( 3, 6)( 4, 7)( 5, 8)(12,15)(13,16)(14,17)(21,24)(22,25)(23,26)
(30,33)(31,34)(32,35)(39,42)(40,43)(41,44)(48,51)(49,52)(50,53)(57,60)(58,61)
(59,62)(66,69)(67,70)(68,71);
s3 := Sym(74)!( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)
(24,31)(25,34)(26,37)(27,32)(28,35)(29,38)(39,57)(40,60)(41,63)(42,58)(43,61)
(44,64)(45,59)(46,62)(47,65)(48,66)(49,69)(50,72)(51,67)(52,70)(53,73)(54,68)
(55,71)(56,74);
s4 := Sym(74)!( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)(11,47)
(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,66)(22,67)
(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,74)(30,57)(31,58)(32,59)(33,60)
(34,61)(35,62)(36,63)(37,64)(38,65);
poly := sub<Sym(74)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope