include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,4,8}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98765)
Rank : 5
Schlafli Type : {9,2,4,8}
Number of vertices, edges, etc : 9, 9, 4, 16, 8
Order of s0s1s2s3s4 : 72
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,4,4}*576
3-fold quotients : {3,2,4,8}*384b
4-fold quotients : {9,2,2,4}*288, {9,2,4,2}*288
6-fold quotients : {3,2,4,4}*192
8-fold quotients : {9,2,2,2}*144
12-fold quotients : {3,2,2,4}*96, {3,2,4,2}*96
24-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,13)(12,15)(14,17)(18,21)(20,24)(22,23);;
s3 := (10,11)(12,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,25);;
s4 := (11,12)(13,15)(14,17)(16,19)(20,23)(22,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(25)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(25)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(25)!(11,13)(12,15)(14,17)(18,21)(20,24)(22,23);
s3 := Sym(25)!(10,11)(12,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,25);
s4 := Sym(25)!(11,12)(13,15)(14,17)(16,19)(20,23)(22,24);
poly := sub<Sym(25)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope