Polytope of Type {2,72,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,72,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98780)
Rank : 4
Schlafli Type : {2,72,4}
Number of vertices, edges, etc : 2, 72, 144, 4
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,36,4}*576a
   3-fold quotients : {2,24,4}*384b
   4-fold quotients : {2,36,2}*288, {2,18,4}*288a
   6-fold quotients : {2,12,4}*192a
   8-fold quotients : {2,18,2}*144
   9-fold quotients : {2,8,4}*128b
   12-fold quotients : {2,12,2}*96, {2,6,4}*96a
   16-fold quotients : {2,9,2}*72
   18-fold quotients : {2,4,4}*64
   24-fold quotients : {2,6,2}*48
   36-fold quotients : {2,2,4}*32, {2,4,2}*32
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6, 10)(  7,  9)(  8, 11)( 13, 14)( 15, 19)( 16, 18)( 17, 20)
( 21, 30)( 22, 32)( 23, 31)( 24, 37)( 25, 36)( 26, 38)( 27, 34)( 28, 33)
( 29, 35)( 39, 48)( 40, 50)( 41, 49)( 42, 55)( 43, 54)( 44, 56)( 45, 52)
( 46, 51)( 47, 53)( 58, 59)( 60, 64)( 61, 63)( 62, 65)( 67, 68)( 69, 73)
( 70, 72)( 71, 74)( 75,111)( 76,113)( 77,112)( 78,118)( 79,117)( 80,119)
( 81,115)( 82,114)( 83,116)( 84,120)( 85,122)( 86,121)( 87,127)( 88,126)
( 89,128)( 90,124)( 91,123)( 92,125)( 93,138)( 94,140)( 95,139)( 96,145)
( 97,144)( 98,146)( 99,142)(100,141)(101,143)(102,129)(103,131)(104,130)
(105,136)(106,135)(107,137)(108,133)(109,132)(110,134);;
s2 := (  3, 78)(  4, 80)(  5, 79)(  6, 75)(  7, 77)(  8, 76)(  9, 82)( 10, 81)
( 11, 83)( 12, 87)( 13, 89)( 14, 88)( 15, 84)( 16, 86)( 17, 85)( 18, 91)
( 19, 90)( 20, 92)( 21, 96)( 22, 98)( 23, 97)( 24, 93)( 25, 95)( 26, 94)
( 27,100)( 28, 99)( 29,101)( 30,105)( 31,107)( 32,106)( 33,102)( 34,104)
( 35,103)( 36,109)( 37,108)( 38,110)( 39,123)( 40,125)( 41,124)( 42,120)
( 43,122)( 44,121)( 45,127)( 46,126)( 47,128)( 48,114)( 49,116)( 50,115)
( 51,111)( 52,113)( 53,112)( 54,118)( 55,117)( 56,119)( 57,141)( 58,143)
( 59,142)( 60,138)( 61,140)( 62,139)( 63,145)( 64,144)( 65,146)( 66,132)
( 67,134)( 68,133)( 69,129)( 70,131)( 71,130)( 72,136)( 73,135)( 74,137);;
s3 := ( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)( 44, 53)( 45, 54)( 46, 55)
( 47, 56)( 57, 66)( 58, 67)( 59, 68)( 60, 69)( 61, 70)( 62, 71)( 63, 72)
( 64, 73)( 65, 74)( 75, 93)( 76, 94)( 77, 95)( 78, 96)( 79, 97)( 80, 98)
( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)( 86,104)( 87,105)( 88,106)
( 89,107)( 90,108)( 91,109)( 92,110)(111,138)(112,139)(113,140)(114,141)
(115,142)(116,143)(117,144)(118,145)(119,146)(120,129)(121,130)(122,131)
(123,132)(124,133)(125,134)(126,135)(127,136)(128,137);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  4,  5)(  6, 10)(  7,  9)(  8, 11)( 13, 14)( 15, 19)( 16, 18)
( 17, 20)( 21, 30)( 22, 32)( 23, 31)( 24, 37)( 25, 36)( 26, 38)( 27, 34)
( 28, 33)( 29, 35)( 39, 48)( 40, 50)( 41, 49)( 42, 55)( 43, 54)( 44, 56)
( 45, 52)( 46, 51)( 47, 53)( 58, 59)( 60, 64)( 61, 63)( 62, 65)( 67, 68)
( 69, 73)( 70, 72)( 71, 74)( 75,111)( 76,113)( 77,112)( 78,118)( 79,117)
( 80,119)( 81,115)( 82,114)( 83,116)( 84,120)( 85,122)( 86,121)( 87,127)
( 88,126)( 89,128)( 90,124)( 91,123)( 92,125)( 93,138)( 94,140)( 95,139)
( 96,145)( 97,144)( 98,146)( 99,142)(100,141)(101,143)(102,129)(103,131)
(104,130)(105,136)(106,135)(107,137)(108,133)(109,132)(110,134);
s2 := Sym(146)!(  3, 78)(  4, 80)(  5, 79)(  6, 75)(  7, 77)(  8, 76)(  9, 82)
( 10, 81)( 11, 83)( 12, 87)( 13, 89)( 14, 88)( 15, 84)( 16, 86)( 17, 85)
( 18, 91)( 19, 90)( 20, 92)( 21, 96)( 22, 98)( 23, 97)( 24, 93)( 25, 95)
( 26, 94)( 27,100)( 28, 99)( 29,101)( 30,105)( 31,107)( 32,106)( 33,102)
( 34,104)( 35,103)( 36,109)( 37,108)( 38,110)( 39,123)( 40,125)( 41,124)
( 42,120)( 43,122)( 44,121)( 45,127)( 46,126)( 47,128)( 48,114)( 49,116)
( 50,115)( 51,111)( 52,113)( 53,112)( 54,118)( 55,117)( 56,119)( 57,141)
( 58,143)( 59,142)( 60,138)( 61,140)( 62,139)( 63,145)( 64,144)( 65,146)
( 66,132)( 67,134)( 68,133)( 69,129)( 70,131)( 71,130)( 72,136)( 73,135)
( 74,137);
s3 := Sym(146)!( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)( 44, 53)( 45, 54)
( 46, 55)( 47, 56)( 57, 66)( 58, 67)( 59, 68)( 60, 69)( 61, 70)( 62, 71)
( 63, 72)( 64, 73)( 65, 74)( 75, 93)( 76, 94)( 77, 95)( 78, 96)( 79, 97)
( 80, 98)( 81, 99)( 82,100)( 83,101)( 84,102)( 85,103)( 86,104)( 87,105)
( 88,106)( 89,107)( 90,108)( 91,109)( 92,110)(111,138)(112,139)(113,140)
(114,141)(115,142)(116,143)(117,144)(118,145)(119,146)(120,129)(121,130)
(122,131)(123,132)(124,133)(125,134)(126,135)(127,136)(128,137);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope