Polytope of Type {12,24,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,24,2}*1152e
if this polytope has a name.
Group : SmallGroup(1152,98801)
Rank : 4
Schlafli Type : {12,24,2}
Number of vertices, edges, etc : 12, 144, 24, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,12,2}*576b
   3-fold quotients : {4,24,2}*384b
   4-fold quotients : {6,12,2}*288b, {12,6,2}*288c
   6-fold quotients : {4,12,2}*192a
   8-fold quotients : {6,6,2}*144b
   9-fold quotients : {4,8,2}*128b
   12-fold quotients : {2,12,2}*96, {4,6,2}*96a
   16-fold quotients : {6,3,2}*72
   18-fold quotients : {4,4,2}*64
   24-fold quotients : {2,6,2}*48
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   48-fold quotients : {2,3,2}*24
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 19, 28)( 20, 29)
( 21, 30)( 22, 34)( 23, 35)( 24, 36)( 25, 31)( 26, 32)( 27, 33)( 40, 43)
( 41, 44)( 42, 45)( 49, 52)( 50, 53)( 51, 54)( 55, 64)( 56, 65)( 57, 66)
( 58, 70)( 59, 71)( 60, 72)( 61, 67)( 62, 68)( 63, 69)( 73,109)( 74,110)
( 75,111)( 76,115)( 77,116)( 78,117)( 79,112)( 80,113)( 81,114)( 82,118)
( 83,119)( 84,120)( 85,124)( 86,125)( 87,126)( 88,121)( 89,122)( 90,123)
( 91,136)( 92,137)( 93,138)( 94,142)( 95,143)( 96,144)( 97,139)( 98,140)
( 99,141)(100,127)(101,128)(102,129)(103,133)(104,134)(105,135)(106,130)
(107,131)(108,132);;
s1 := (  1, 76)(  2, 78)(  3, 77)(  4, 73)(  5, 75)(  6, 74)(  7, 79)(  8, 81)
(  9, 80)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)( 16, 88)
( 17, 90)( 18, 89)( 19,103)( 20,105)( 21,104)( 22,100)( 23,102)( 24,101)
( 25,106)( 26,108)( 27,107)( 28, 94)( 29, 96)( 30, 95)( 31, 91)( 32, 93)
( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37,112)( 38,114)( 39,113)( 40,109)
( 41,111)( 42,110)( 43,115)( 44,117)( 45,116)( 46,121)( 47,123)( 48,122)
( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,139)( 56,141)
( 57,140)( 58,136)( 59,138)( 60,137)( 61,142)( 62,144)( 63,143)( 64,130)
( 65,132)( 66,131)( 67,127)( 68,129)( 69,128)( 70,133)( 71,135)( 72,134);;
s2 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)( 44, 49)
( 45, 51)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)( 61, 68)
( 62, 67)( 63, 69)( 73,137)( 74,136)( 75,138)( 76,143)( 77,142)( 78,144)
( 79,140)( 80,139)( 81,141)( 82,128)( 83,127)( 84,129)( 85,134)( 86,133)
( 87,135)( 88,131)( 89,130)( 90,132)( 91,110)( 92,109)( 93,111)( 94,116)
( 95,115)( 96,117)( 97,113)( 98,112)( 99,114)(100,119)(101,118)(102,120)
(103,125)(104,124)(105,126)(106,122)(107,121)(108,123);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 19, 28)
( 20, 29)( 21, 30)( 22, 34)( 23, 35)( 24, 36)( 25, 31)( 26, 32)( 27, 33)
( 40, 43)( 41, 44)( 42, 45)( 49, 52)( 50, 53)( 51, 54)( 55, 64)( 56, 65)
( 57, 66)( 58, 70)( 59, 71)( 60, 72)( 61, 67)( 62, 68)( 63, 69)( 73,109)
( 74,110)( 75,111)( 76,115)( 77,116)( 78,117)( 79,112)( 80,113)( 81,114)
( 82,118)( 83,119)( 84,120)( 85,124)( 86,125)( 87,126)( 88,121)( 89,122)
( 90,123)( 91,136)( 92,137)( 93,138)( 94,142)( 95,143)( 96,144)( 97,139)
( 98,140)( 99,141)(100,127)(101,128)(102,129)(103,133)(104,134)(105,135)
(106,130)(107,131)(108,132);
s1 := Sym(146)!(  1, 76)(  2, 78)(  3, 77)(  4, 73)(  5, 75)(  6, 74)(  7, 79)
(  8, 81)(  9, 80)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)
( 16, 88)( 17, 90)( 18, 89)( 19,103)( 20,105)( 21,104)( 22,100)( 23,102)
( 24,101)( 25,106)( 26,108)( 27,107)( 28, 94)( 29, 96)( 30, 95)( 31, 91)
( 32, 93)( 33, 92)( 34, 97)( 35, 99)( 36, 98)( 37,112)( 38,114)( 39,113)
( 40,109)( 41,111)( 42,110)( 43,115)( 44,117)( 45,116)( 46,121)( 47,123)
( 48,122)( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,139)
( 56,141)( 57,140)( 58,136)( 59,138)( 60,137)( 61,142)( 62,144)( 63,143)
( 64,130)( 65,132)( 66,131)( 67,127)( 68,129)( 69,128)( 70,133)( 71,135)
( 72,134);
s2 := Sym(146)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 55, 65)( 56, 64)( 57, 66)( 58, 71)( 59, 70)( 60, 72)
( 61, 68)( 62, 67)( 63, 69)( 73,137)( 74,136)( 75,138)( 76,143)( 77,142)
( 78,144)( 79,140)( 80,139)( 81,141)( 82,128)( 83,127)( 84,129)( 85,134)
( 86,133)( 87,135)( 88,131)( 89,130)( 90,132)( 91,110)( 92,109)( 93,111)
( 94,116)( 95,115)( 96,117)( 97,113)( 98,112)( 99,114)(100,119)(101,118)
(102,120)(103,125)(104,124)(105,126)(106,122)(107,121)(108,123);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 >; 
 

to this polytope