include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98807)
Rank : 4
Schlafli Type : {4,8,2}
Number of vertices, edges, etc : 36, 144, 72, 2
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,2}*576
4-fold quotients : {4,4,2}*288
8-fold quotients : {4,4,2}*144
9-fold quotients : {4,8,2}*128b
18-fold quotients : {4,4,2}*64
36-fold quotients : {2,4,2}*32, {4,2,2}*32
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)
(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);;
s1 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)(22,29)
(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)(42,62)
(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)(53,69)
(54,72);;
s2 := ( 1,47)( 2,46)( 3,48)( 4,50)( 5,49)( 6,51)( 7,53)( 8,52)( 9,54)(10,38)
(11,37)(12,39)(13,41)(14,40)(15,42)(16,44)(17,43)(18,45)(19,65)(20,64)(21,66)
(22,68)(23,67)(24,69)(25,71)(26,70)(27,72)(28,56)(29,55)(30,57)(31,59)(32,58)
(33,60)(34,62)(35,61)(36,63);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(74)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)
(51,54)(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);
s1 := Sym(74)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(19,28)(20,31)(21,34)
(22,29)(23,32)(24,35)(25,30)(26,33)(27,36)(37,55)(38,58)(39,61)(40,56)(41,59)
(42,62)(43,57)(44,60)(45,63)(46,64)(47,67)(48,70)(49,65)(50,68)(51,71)(52,66)
(53,69)(54,72);
s2 := Sym(74)!( 1,47)( 2,46)( 3,48)( 4,50)( 5,49)( 6,51)( 7,53)( 8,52)( 9,54)
(10,38)(11,37)(12,39)(13,41)(14,40)(15,42)(16,44)(17,43)(18,45)(19,65)(20,64)
(21,66)(22,68)(23,67)(24,69)(25,71)(26,70)(27,72)(28,56)(29,55)(30,57)(31,59)
(32,58)(33,60)(34,62)(35,61)(36,63);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2 >;
to this polytope