Polytope of Type {24,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,98807)
Rank : 4
Schlafli Type : {24,4,2}
Number of vertices, edges, etc : 72, 144, 12, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4,2}*576
   4-fold quotients : {6,4,2}*288
   8-fold quotients : {6,4,2}*144
   9-fold quotients : {8,4,2}*128b
   18-fold quotients : {4,4,2}*64
   36-fold quotients : {2,4,2}*32, {4,2,2}*32
   72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,46)( 2,48)( 3,47)( 4,52)( 5,54)( 6,53)( 7,49)( 8,51)( 9,50)(10,37)
(11,39)(12,38)(13,43)(14,45)(15,44)(16,40)(17,42)(18,41)(19,55)(20,57)(21,56)
(22,61)(23,63)(24,62)(25,58)(26,60)(27,59)(28,64)(29,66)(30,65)(31,70)(32,72)
(33,71)(34,67)(35,69)(36,68);;
s1 := ( 1, 5)( 3, 8)( 6, 7)(10,14)(12,17)(15,16)(19,32)(20,29)(21,35)(22,31)
(23,28)(24,34)(25,33)(26,30)(27,36)(37,68)(38,65)(39,71)(40,67)(41,64)(42,70)
(43,69)(44,66)(45,72)(46,59)(47,56)(48,62)(49,58)(50,55)(51,61)(52,60)(53,57)
(54,63);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)
(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 1,46)( 2,48)( 3,47)( 4,52)( 5,54)( 6,53)( 7,49)( 8,51)( 9,50)
(10,37)(11,39)(12,38)(13,43)(14,45)(15,44)(16,40)(17,42)(18,41)(19,55)(20,57)
(21,56)(22,61)(23,63)(24,62)(25,58)(26,60)(27,59)(28,64)(29,66)(30,65)(31,70)
(32,72)(33,71)(34,67)(35,69)(36,68);
s1 := Sym(74)!( 1, 5)( 3, 8)( 6, 7)(10,14)(12,17)(15,16)(19,32)(20,29)(21,35)
(22,31)(23,28)(24,34)(25,33)(26,30)(27,36)(37,68)(38,65)(39,71)(40,67)(41,64)
(42,70)(43,69)(44,66)(45,72)(46,59)(47,56)(48,62)(49,58)(50,55)(51,61)(52,60)
(53,57)(54,63);
s2 := Sym(74)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(40,43)(41,44)(42,45)(49,52)(50,53)
(51,54)(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)(63,69);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope