include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,6}*1152b
if this polytope has a name.
Group : SmallGroup(1152,99266)
Rank : 4
Schlafli Type : {4,12,6}
Number of vertices, edges, etc : 8, 48, 72, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,12,6}*576a
3-fold quotients : {4,12,2}*384a, {4,4,6}*384a
4-fold quotients : {2,12,6}*288a, {4,6,6}*288a
6-fold quotients : {4,12,2}*192a, {4,4,6}*192
8-fold quotients : {2,6,6}*144a
9-fold quotients : {4,4,2}*128
12-fold quotients : {2,12,2}*96, {2,4,6}*96a, {4,2,6}*96, {4,6,2}*96a
18-fold quotients : {4,4,2}*64
24-fold quotients : {4,2,3}*48, {2,2,6}*48, {2,6,2}*48
36-fold quotients : {2,4,2}*32, {4,2,2}*32
48-fold quotients : {2,2,3}*24, {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)( 26, 35)
( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)( 61, 70)
( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)( 96,105)
( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)(131,140)
(132,141)(133,142)(134,143)(135,144);;
s1 := ( 1, 37)( 2, 44)( 3, 42)( 4, 43)( 5, 41)( 6, 39)( 7, 40)( 8, 38)
( 9, 45)( 10, 46)( 11, 53)( 12, 51)( 13, 52)( 14, 50)( 15, 48)( 16, 49)
( 17, 47)( 18, 54)( 19, 55)( 20, 62)( 21, 60)( 22, 61)( 23, 59)( 24, 57)
( 25, 58)( 26, 56)( 27, 63)( 28, 64)( 29, 71)( 30, 69)( 31, 70)( 32, 68)
( 33, 66)( 34, 67)( 35, 65)( 36, 72)( 73,127)( 74,134)( 75,132)( 76,133)
( 77,131)( 78,129)( 79,130)( 80,128)( 81,135)( 82,136)( 83,143)( 84,141)
( 85,142)( 86,140)( 87,138)( 88,139)( 89,137)( 90,144)( 91,109)( 92,116)
( 93,114)( 94,115)( 95,113)( 96,111)( 97,112)( 98,110)( 99,117)(100,118)
(101,125)(102,123)(103,124)(104,122)(105,120)(106,121)(107,119)(108,126);;
s2 := ( 1, 76)( 2, 78)( 3, 77)( 4, 73)( 5, 75)( 6, 74)( 7, 79)( 8, 81)
( 9, 80)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)( 16, 88)
( 17, 90)( 18, 89)( 19, 94)( 20, 96)( 21, 95)( 22, 91)( 23, 93)( 24, 92)
( 25, 97)( 26, 99)( 27, 98)( 28,103)( 29,105)( 30,104)( 31,100)( 32,102)
( 33,101)( 34,106)( 35,108)( 36,107)( 37,112)( 38,114)( 39,113)( 40,109)
( 41,111)( 42,110)( 43,115)( 44,117)( 45,116)( 46,121)( 47,123)( 48,122)
( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,130)( 56,132)
( 57,131)( 58,127)( 59,129)( 60,128)( 61,133)( 62,135)( 63,134)( 64,139)
( 65,141)( 66,140)( 67,136)( 68,138)( 69,137)( 70,142)( 71,144)( 72,143);;
s3 := ( 1, 41)( 2, 43)( 3, 39)( 4, 44)( 5, 37)( 6, 42)( 7, 38)( 8, 40)
( 9, 45)( 10, 50)( 11, 52)( 12, 48)( 13, 53)( 14, 46)( 15, 51)( 16, 47)
( 17, 49)( 18, 54)( 19, 59)( 20, 61)( 21, 57)( 22, 62)( 23, 55)( 24, 60)
( 25, 56)( 26, 58)( 27, 63)( 28, 68)( 29, 70)( 30, 66)( 31, 71)( 32, 64)
( 33, 69)( 34, 65)( 35, 67)( 36, 72)( 73,113)( 74,115)( 75,111)( 76,116)
( 77,109)( 78,114)( 79,110)( 80,112)( 81,117)( 82,122)( 83,124)( 84,120)
( 85,125)( 86,118)( 87,123)( 88,119)( 89,121)( 90,126)( 91,131)( 92,133)
( 93,129)( 94,134)( 95,127)( 96,132)( 97,128)( 98,130)( 99,135)(100,140)
(101,142)(102,138)(103,143)(104,136)(105,141)(106,137)(107,139)(108,144);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)
( 26, 35)( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)
( 61, 70)( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)
( 96,105)( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)
(131,140)(132,141)(133,142)(134,143)(135,144);
s1 := Sym(144)!( 1, 37)( 2, 44)( 3, 42)( 4, 43)( 5, 41)( 6, 39)( 7, 40)
( 8, 38)( 9, 45)( 10, 46)( 11, 53)( 12, 51)( 13, 52)( 14, 50)( 15, 48)
( 16, 49)( 17, 47)( 18, 54)( 19, 55)( 20, 62)( 21, 60)( 22, 61)( 23, 59)
( 24, 57)( 25, 58)( 26, 56)( 27, 63)( 28, 64)( 29, 71)( 30, 69)( 31, 70)
( 32, 68)( 33, 66)( 34, 67)( 35, 65)( 36, 72)( 73,127)( 74,134)( 75,132)
( 76,133)( 77,131)( 78,129)( 79,130)( 80,128)( 81,135)( 82,136)( 83,143)
( 84,141)( 85,142)( 86,140)( 87,138)( 88,139)( 89,137)( 90,144)( 91,109)
( 92,116)( 93,114)( 94,115)( 95,113)( 96,111)( 97,112)( 98,110)( 99,117)
(100,118)(101,125)(102,123)(103,124)(104,122)(105,120)(106,121)(107,119)
(108,126);
s2 := Sym(144)!( 1, 76)( 2, 78)( 3, 77)( 4, 73)( 5, 75)( 6, 74)( 7, 79)
( 8, 81)( 9, 80)( 10, 85)( 11, 87)( 12, 86)( 13, 82)( 14, 84)( 15, 83)
( 16, 88)( 17, 90)( 18, 89)( 19, 94)( 20, 96)( 21, 95)( 22, 91)( 23, 93)
( 24, 92)( 25, 97)( 26, 99)( 27, 98)( 28,103)( 29,105)( 30,104)( 31,100)
( 32,102)( 33,101)( 34,106)( 35,108)( 36,107)( 37,112)( 38,114)( 39,113)
( 40,109)( 41,111)( 42,110)( 43,115)( 44,117)( 45,116)( 46,121)( 47,123)
( 48,122)( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,130)
( 56,132)( 57,131)( 58,127)( 59,129)( 60,128)( 61,133)( 62,135)( 63,134)
( 64,139)( 65,141)( 66,140)( 67,136)( 68,138)( 69,137)( 70,142)( 71,144)
( 72,143);
s3 := Sym(144)!( 1, 41)( 2, 43)( 3, 39)( 4, 44)( 5, 37)( 6, 42)( 7, 38)
( 8, 40)( 9, 45)( 10, 50)( 11, 52)( 12, 48)( 13, 53)( 14, 46)( 15, 51)
( 16, 47)( 17, 49)( 18, 54)( 19, 59)( 20, 61)( 21, 57)( 22, 62)( 23, 55)
( 24, 60)( 25, 56)( 26, 58)( 27, 63)( 28, 68)( 29, 70)( 30, 66)( 31, 71)
( 32, 64)( 33, 69)( 34, 65)( 35, 67)( 36, 72)( 73,113)( 74,115)( 75,111)
( 76,116)( 77,109)( 78,114)( 79,110)( 80,112)( 81,117)( 82,122)( 83,124)
( 84,120)( 85,125)( 86,118)( 87,123)( 88,119)( 89,121)( 90,126)( 91,131)
( 92,133)( 93,129)( 94,134)( 95,127)( 96,132)( 97,128)( 98,130)( 99,135)
(100,140)(101,142)(102,138)(103,143)(104,136)(105,141)(106,137)(107,139)
(108,144);
poly := sub<Sym(144)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope