include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,99278)
Rank : 4
Schlafli Type : {4,4,6}
Number of vertices, edges, etc : 8, 48, 72, 18
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,6}*576
4-fold quotients : {4,4,6}*288, {2,4,6}*288
8-fold quotients : {2,4,6}*144
9-fold quotients : {4,4,2}*128
18-fold quotients : {4,4,2}*64
36-fold quotients : {2,4,2}*32, {4,2,2}*32
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)( 26, 35)
( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)( 61, 70)
( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)( 96,105)
( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)(131,140)
(132,141)(133,142)(134,143)(135,144);;
s1 := ( 2, 6)( 3, 8)( 5, 9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)( 21, 26)
( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 38, 42)( 39, 44)( 41, 45)( 47, 51)
( 48, 53)( 50, 54)( 56, 60)( 57, 62)( 59, 63)( 65, 69)( 66, 71)( 68, 72)
( 73, 91)( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)( 80, 93)
( 81, 95)( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)( 88,106)
( 89,102)( 90,104)(109,127)(110,132)(111,134)(112,130)(113,135)(114,128)
(115,133)(116,129)(117,131)(118,136)(119,141)(120,143)(121,139)(122,144)
(123,137)(124,142)(125,138)(126,140);;
s2 := ( 1, 73)( 2, 75)( 3, 74)( 4, 77)( 5, 76)( 6, 78)( 7, 81)( 8, 80)
( 9, 79)( 10, 82)( 11, 84)( 12, 83)( 13, 86)( 14, 85)( 15, 87)( 16, 90)
( 17, 89)( 18, 88)( 19, 91)( 20, 93)( 21, 92)( 22, 95)( 23, 94)( 24, 96)
( 25, 99)( 26, 98)( 27, 97)( 28,100)( 29,102)( 30,101)( 31,104)( 32,103)
( 33,105)( 34,108)( 35,107)( 36,106)( 37,109)( 38,111)( 39,110)( 40,113)
( 41,112)( 42,114)( 43,117)( 44,116)( 45,115)( 46,118)( 47,120)( 48,119)
( 49,122)( 50,121)( 51,123)( 52,126)( 53,125)( 54,124)( 55,127)( 56,129)
( 57,128)( 58,131)( 59,130)( 60,132)( 61,135)( 62,134)( 63,133)( 64,136)
( 65,138)( 66,137)( 67,140)( 68,139)( 69,141)( 70,144)( 71,143)( 72,142);;
s3 := ( 1, 40)( 2, 42)( 3, 41)( 4, 37)( 5, 39)( 6, 38)( 7, 43)( 8, 45)
( 9, 44)( 10, 49)( 11, 51)( 12, 50)( 13, 46)( 14, 48)( 15, 47)( 16, 52)
( 17, 54)( 18, 53)( 19, 58)( 20, 60)( 21, 59)( 22, 55)( 23, 57)( 24, 56)
( 25, 61)( 26, 63)( 27, 62)( 28, 67)( 29, 69)( 30, 68)( 31, 64)( 32, 66)
( 33, 65)( 34, 70)( 35, 72)( 36, 71)( 73,112)( 74,114)( 75,113)( 76,109)
( 77,111)( 78,110)( 79,115)( 80,117)( 81,116)( 82,121)( 83,123)( 84,122)
( 85,118)( 86,120)( 87,119)( 88,124)( 89,126)( 90,125)( 91,130)( 92,132)
( 93,131)( 94,127)( 95,129)( 96,128)( 97,133)( 98,135)( 99,134)(100,139)
(101,141)(102,140)(103,136)(104,138)(105,137)(106,142)(107,144)(108,143);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(144)!( 19, 28)( 20, 29)( 21, 30)( 22, 31)( 23, 32)( 24, 33)( 25, 34)
( 26, 35)( 27, 36)( 55, 64)( 56, 65)( 57, 66)( 58, 67)( 59, 68)( 60, 69)
( 61, 70)( 62, 71)( 63, 72)( 91,100)( 92,101)( 93,102)( 94,103)( 95,104)
( 96,105)( 97,106)( 98,107)( 99,108)(127,136)(128,137)(129,138)(130,139)
(131,140)(132,141)(133,142)(134,143)(135,144);
s1 := Sym(144)!( 2, 6)( 3, 8)( 5, 9)( 11, 15)( 12, 17)( 14, 18)( 20, 24)
( 21, 26)( 23, 27)( 29, 33)( 30, 35)( 32, 36)( 38, 42)( 39, 44)( 41, 45)
( 47, 51)( 48, 53)( 50, 54)( 56, 60)( 57, 62)( 59, 63)( 65, 69)( 66, 71)
( 68, 72)( 73, 91)( 74, 96)( 75, 98)( 76, 94)( 77, 99)( 78, 92)( 79, 97)
( 80, 93)( 81, 95)( 82,100)( 83,105)( 84,107)( 85,103)( 86,108)( 87,101)
( 88,106)( 89,102)( 90,104)(109,127)(110,132)(111,134)(112,130)(113,135)
(114,128)(115,133)(116,129)(117,131)(118,136)(119,141)(120,143)(121,139)
(122,144)(123,137)(124,142)(125,138)(126,140);
s2 := Sym(144)!( 1, 73)( 2, 75)( 3, 74)( 4, 77)( 5, 76)( 6, 78)( 7, 81)
( 8, 80)( 9, 79)( 10, 82)( 11, 84)( 12, 83)( 13, 86)( 14, 85)( 15, 87)
( 16, 90)( 17, 89)( 18, 88)( 19, 91)( 20, 93)( 21, 92)( 22, 95)( 23, 94)
( 24, 96)( 25, 99)( 26, 98)( 27, 97)( 28,100)( 29,102)( 30,101)( 31,104)
( 32,103)( 33,105)( 34,108)( 35,107)( 36,106)( 37,109)( 38,111)( 39,110)
( 40,113)( 41,112)( 42,114)( 43,117)( 44,116)( 45,115)( 46,118)( 47,120)
( 48,119)( 49,122)( 50,121)( 51,123)( 52,126)( 53,125)( 54,124)( 55,127)
( 56,129)( 57,128)( 58,131)( 59,130)( 60,132)( 61,135)( 62,134)( 63,133)
( 64,136)( 65,138)( 66,137)( 67,140)( 68,139)( 69,141)( 70,144)( 71,143)
( 72,142);
s3 := Sym(144)!( 1, 40)( 2, 42)( 3, 41)( 4, 37)( 5, 39)( 6, 38)( 7, 43)
( 8, 45)( 9, 44)( 10, 49)( 11, 51)( 12, 50)( 13, 46)( 14, 48)( 15, 47)
( 16, 52)( 17, 54)( 18, 53)( 19, 58)( 20, 60)( 21, 59)( 22, 55)( 23, 57)
( 24, 56)( 25, 61)( 26, 63)( 27, 62)( 28, 67)( 29, 69)( 30, 68)( 31, 64)
( 32, 66)( 33, 65)( 34, 70)( 35, 72)( 36, 71)( 73,112)( 74,114)( 75,113)
( 76,109)( 77,111)( 78,110)( 79,115)( 80,117)( 81,116)( 82,121)( 83,123)
( 84,122)( 85,118)( 86,120)( 87,119)( 88,124)( 89,126)( 90,125)( 91,130)
( 92,132)( 93,131)( 94,127)( 95,129)( 96,128)( 97,133)( 98,135)( 99,134)
(100,139)(101,141)(102,140)(103,136)(104,138)(105,137)(106,142)(107,144)
(108,143);
poly := sub<Sym(144)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope