include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,3,2}*1176
if this polytope has a name.
Group : SmallGroup(1176,225)
Rank : 4
Schlafli Type : {14,3,2}
Number of vertices, edges, etc : 98, 147, 21, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
49-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)(14,44)
(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)(25,33)
(26,32)(27,31)(28,30);;
s1 := ( 1, 9)( 3,44)( 4,37)( 5,30)( 6,23)( 7,16)(10,43)(11,36)(12,29)(13,22)
(14,15)(17,49)(18,42)(19,35)(20,28)(24,48)(25,41)(26,34)(31,47)(32,40)
(38,46);;
s2 := ( 2,22)( 3,43)( 4,15)( 5,36)( 6, 8)( 7,29)( 9,27)(10,48)(11,20)(12,41)
(14,34)(16,25)(17,46)(19,39)(21,32)(24,44)(26,37)(28,30)(31,49)(33,42)
(38,47);;
s3 := (50,51);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(51)!( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)
(14,44)(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)
(25,33)(26,32)(27,31)(28,30);
s1 := Sym(51)!( 1, 9)( 3,44)( 4,37)( 5,30)( 6,23)( 7,16)(10,43)(11,36)(12,29)
(13,22)(14,15)(17,49)(18,42)(19,35)(20,28)(24,48)(25,41)(26,34)(31,47)(32,40)
(38,46);
s2 := Sym(51)!( 2,22)( 3,43)( 4,15)( 5,36)( 6, 8)( 7,29)( 9,27)(10,48)(11,20)
(12,41)(14,34)(16,25)(17,46)(19,39)(21,32)(24,44)(26,37)(28,30)(31,49)(33,42)
(38,47);
s3 := Sym(51)!(50,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope