include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {33,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {33,6,3}*1188
if this polytope has a name.
Group : SmallGroup(1188,41)
Rank : 4
Schlafli Type : {33,6,3}
Number of vertices, edges, etc : 33, 99, 9, 3
Order of s0s1s2s3 : 33
Order of s0s1s2s3s2s1 : 6
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {33,2,3}*396
9-fold quotients : {11,2,3}*132
11-fold quotients : {3,6,3}*108
33-fold quotients : {3,2,3}*36
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4,31)( 5,33)( 6,32)( 7,28)( 8,30)( 9,29)(10,25)(11,27)(12,26)
(13,22)(14,24)(15,23)(16,19)(17,21)(18,20)(35,36)(37,64)(38,66)(39,65)(40,61)
(41,63)(42,62)(43,58)(44,60)(45,59)(46,55)(47,57)(48,56)(49,52)(50,54)(51,53)
(68,69)(70,97)(71,99)(72,98)(73,94)(74,96)(75,95)(76,91)(77,93)(78,92)(79,88)
(80,90)(81,89)(82,85)(83,87)(84,86);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 7,31)( 8,33)( 9,32)(10,28)(11,30)(12,29)(13,25)
(14,27)(15,26)(16,22)(17,24)(18,23)(20,21)(34,38)(35,37)(36,39)(40,65)(41,64)
(42,66)(43,62)(44,61)(45,63)(46,59)(47,58)(48,60)(49,56)(50,55)(51,57)(52,53)
(67,72)(68,71)(69,70)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)(80,92)
(81,91)(82,90)(83,89)(84,88)(85,87);;
s2 := ( 1,34)( 2,36)( 3,35)( 4,37)( 5,39)( 6,38)( 7,40)( 8,42)( 9,41)(10,43)
(11,45)(12,44)(13,46)(14,48)(15,47)(16,49)(17,51)(18,50)(19,52)(20,54)(21,53)
(22,55)(23,57)(24,56)(25,58)(26,60)(27,59)(28,61)(29,63)(30,62)(31,64)(32,66)
(33,65)(68,69)(71,72)(74,75)(77,78)(80,81)(83,84)(86,87)(89,90)(92,93)(95,96)
(98,99);;
s3 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(34,67)(35,69)(36,68)(37,70)(38,72)(39,71)(40,73)(41,75)(42,74)(43,76)
(44,78)(45,77)(46,79)(47,81)(48,80)(49,82)(50,84)(51,83)(52,85)(53,87)(54,86)
(55,88)(56,90)(57,89)(58,91)(59,93)(60,92)(61,94)(62,96)(63,95)(64,97)(65,99)
(66,98);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(99)!( 2, 3)( 4,31)( 5,33)( 6,32)( 7,28)( 8,30)( 9,29)(10,25)(11,27)
(12,26)(13,22)(14,24)(15,23)(16,19)(17,21)(18,20)(35,36)(37,64)(38,66)(39,65)
(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)(46,55)(47,57)(48,56)(49,52)(50,54)
(51,53)(68,69)(70,97)(71,99)(72,98)(73,94)(74,96)(75,95)(76,91)(77,93)(78,92)
(79,88)(80,90)(81,89)(82,85)(83,87)(84,86);
s1 := Sym(99)!( 1, 4)( 2, 6)( 3, 5)( 7,31)( 8,33)( 9,32)(10,28)(11,30)(12,29)
(13,25)(14,27)(15,26)(16,22)(17,24)(18,23)(20,21)(34,38)(35,37)(36,39)(40,65)
(41,64)(42,66)(43,62)(44,61)(45,63)(46,59)(47,58)(48,60)(49,56)(50,55)(51,57)
(52,53)(67,72)(68,71)(69,70)(73,99)(74,98)(75,97)(76,96)(77,95)(78,94)(79,93)
(80,92)(81,91)(82,90)(83,89)(84,88)(85,87);
s2 := Sym(99)!( 1,34)( 2,36)( 3,35)( 4,37)( 5,39)( 6,38)( 7,40)( 8,42)( 9,41)
(10,43)(11,45)(12,44)(13,46)(14,48)(15,47)(16,49)(17,51)(18,50)(19,52)(20,54)
(21,53)(22,55)(23,57)(24,56)(25,58)(26,60)(27,59)(28,61)(29,63)(30,62)(31,64)
(32,66)(33,65)(68,69)(71,72)(74,75)(77,78)(80,81)(83,84)(86,87)(89,90)(92,93)
(95,96)(98,99);
s3 := Sym(99)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(34,67)(35,69)(36,68)(37,70)(38,72)(39,71)(40,73)(41,75)(42,74)
(43,76)(44,78)(45,77)(46,79)(47,81)(48,80)(49,82)(50,84)(51,83)(52,85)(53,87)
(54,86)(55,88)(56,90)(57,89)(58,91)(59,93)(60,92)(61,94)(62,96)(63,95)(64,97)
(65,99)(66,98);
poly := sub<Sym(99)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope