Polytope of Type {6,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,10,10}*1200b
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 4
Schlafli Type : {6,10,10}
Number of vertices, edges, etc : 6, 30, 50, 10
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,10,5}*600
   3-fold quotients : {2,10,10}*400b
   5-fold quotients : {6,2,10}*240
   6-fold quotients : {2,10,5}*200
   10-fold quotients : {3,2,10}*120, {6,2,5}*120
   15-fold quotients : {2,2,10}*80
   20-fold quotients : {3,2,5}*60
   25-fold quotients : {6,2,2}*48
   30-fold quotients : {2,2,5}*40
   50-fold quotients : {3,2,2}*24
   75-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 26, 51)( 27, 52)( 28, 53)( 29, 54)( 30, 55)( 31, 56)( 32, 57)( 33, 58)
( 34, 59)( 35, 60)( 36, 61)( 37, 62)( 38, 63)( 39, 64)( 40, 65)( 41, 66)
( 42, 67)( 43, 68)( 44, 69)( 45, 70)( 46, 71)( 47, 72)( 48, 73)( 49, 74)
( 50, 75)(101,126)(102,127)(103,128)(104,129)(105,130)(106,131)(107,132)
(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)(115,140)
(116,141)(117,142)(118,143)(119,144)(120,145)(121,146)(122,147)(123,148)
(124,149)(125,150);;
s1 := (  1, 26)(  2, 27)(  3, 28)(  4, 29)(  5, 30)(  6, 46)(  7, 47)(  8, 48)
(  9, 49)( 10, 50)( 11, 41)( 12, 42)( 13, 43)( 14, 44)( 15, 45)( 16, 36)
( 17, 37)( 18, 38)( 19, 39)( 20, 40)( 21, 31)( 22, 32)( 23, 33)( 24, 34)
( 25, 35)( 56, 71)( 57, 72)( 58, 73)( 59, 74)( 60, 75)( 61, 66)( 62, 67)
( 63, 68)( 64, 69)( 65, 70)( 76,101)( 77,102)( 78,103)( 79,104)( 80,105)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,116)( 87,117)( 88,118)
( 89,119)( 90,120)( 91,111)( 92,112)( 93,113)( 94,114)( 95,115)( 96,106)
( 97,107)( 98,108)( 99,109)(100,110)(131,146)(132,147)(133,148)(134,149)
(135,150)(136,141)(137,142)(138,143)(139,144)(140,145);;
s2 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)( 43, 44)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)( 93, 94)
(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)(113,124)
(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)(129,133)
(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)(143,144);;
s3 := (  1, 77)(  2, 76)(  3, 80)(  4, 79)(  5, 78)(  6, 97)(  7, 96)(  8,100)
(  9, 99)( 10, 98)( 11, 92)( 12, 91)( 13, 95)( 14, 94)( 15, 93)( 16, 87)
( 17, 86)( 18, 90)( 19, 89)( 20, 88)( 21, 82)( 22, 81)( 23, 85)( 24, 84)
( 25, 83)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,122)( 32,121)
( 33,125)( 34,124)( 35,123)( 36,117)( 37,116)( 38,120)( 39,119)( 40,118)
( 41,112)( 42,111)( 43,115)( 44,114)( 45,113)( 46,107)( 47,106)( 48,110)
( 49,109)( 50,108)( 51,127)( 52,126)( 53,130)( 54,129)( 55,128)( 56,147)
( 57,146)( 58,150)( 59,149)( 60,148)( 61,142)( 62,141)( 63,145)( 64,144)
( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,132)( 72,131)
( 73,135)( 74,134)( 75,133);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(150)!( 26, 51)( 27, 52)( 28, 53)( 29, 54)( 30, 55)( 31, 56)( 32, 57)
( 33, 58)( 34, 59)( 35, 60)( 36, 61)( 37, 62)( 38, 63)( 39, 64)( 40, 65)
( 41, 66)( 42, 67)( 43, 68)( 44, 69)( 45, 70)( 46, 71)( 47, 72)( 48, 73)
( 49, 74)( 50, 75)(101,126)(102,127)(103,128)(104,129)(105,130)(106,131)
(107,132)(108,133)(109,134)(110,135)(111,136)(112,137)(113,138)(114,139)
(115,140)(116,141)(117,142)(118,143)(119,144)(120,145)(121,146)(122,147)
(123,148)(124,149)(125,150);
s1 := Sym(150)!(  1, 26)(  2, 27)(  3, 28)(  4, 29)(  5, 30)(  6, 46)(  7, 47)
(  8, 48)(  9, 49)( 10, 50)( 11, 41)( 12, 42)( 13, 43)( 14, 44)( 15, 45)
( 16, 36)( 17, 37)( 18, 38)( 19, 39)( 20, 40)( 21, 31)( 22, 32)( 23, 33)
( 24, 34)( 25, 35)( 56, 71)( 57, 72)( 58, 73)( 59, 74)( 60, 75)( 61, 66)
( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 76,101)( 77,102)( 78,103)( 79,104)
( 80,105)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,116)( 87,117)
( 88,118)( 89,119)( 90,120)( 91,111)( 92,112)( 93,113)( 94,114)( 95,115)
( 96,106)( 97,107)( 98,108)( 99,109)(100,110)(131,146)(132,147)(133,148)
(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145);
s2 := Sym(150)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)
( 43, 44)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)
( 63, 74)( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)
( 93, 94)(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)
(113,124)(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)
(129,133)(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)
(143,144);
s3 := Sym(150)!(  1, 77)(  2, 76)(  3, 80)(  4, 79)(  5, 78)(  6, 97)(  7, 96)
(  8,100)(  9, 99)( 10, 98)( 11, 92)( 12, 91)( 13, 95)( 14, 94)( 15, 93)
( 16, 87)( 17, 86)( 18, 90)( 19, 89)( 20, 88)( 21, 82)( 22, 81)( 23, 85)
( 24, 84)( 25, 83)( 26,102)( 27,101)( 28,105)( 29,104)( 30,103)( 31,122)
( 32,121)( 33,125)( 34,124)( 35,123)( 36,117)( 37,116)( 38,120)( 39,119)
( 40,118)( 41,112)( 42,111)( 43,115)( 44,114)( 45,113)( 46,107)( 47,106)
( 48,110)( 49,109)( 50,108)( 51,127)( 52,126)( 53,130)( 54,129)( 55,128)
( 56,147)( 57,146)( 58,150)( 59,149)( 60,148)( 61,142)( 62,141)( 63,145)
( 64,144)( 65,143)( 66,137)( 67,136)( 68,140)( 69,139)( 70,138)( 71,132)
( 72,131)( 73,135)( 74,134)( 75,133);
poly := sub<Sym(150)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope