Polytope of Type {5,2,6,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,6,10}*1200
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {5,2,6,10}
Number of vertices, edges, etc : 5, 5, 6, 30, 10
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5,2,2,10}*400
   5-fold quotients : {5,2,6,2}*240
   6-fold quotients : {5,2,2,5}*200
   10-fold quotients : {5,2,3,2}*120
   15-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 8, 9)(12,13)(16,18)(17,19)(22,24)(23,25)(28,30)(29,31)(32,34)(33,35);;
s3 := ( 6, 8)( 7,12)(10,17)(11,16)(14,23)(15,22)(18,19)(20,29)(21,28)(24,25)
(26,33)(27,32)(30,31)(34,35);;
s4 := ( 6,14)( 7,10)( 8,22)( 9,24)(11,26)(12,16)(13,18)(15,20)(17,32)(19,34)
(21,27)(23,28)(25,30)(29,33)(31,35);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(35)!(2,3)(4,5);
s1 := Sym(35)!(1,2)(3,4);
s2 := Sym(35)!( 8, 9)(12,13)(16,18)(17,19)(22,24)(23,25)(28,30)(29,31)(32,34)
(33,35);
s3 := Sym(35)!( 6, 8)( 7,12)(10,17)(11,16)(14,23)(15,22)(18,19)(20,29)(21,28)
(24,25)(26,33)(27,32)(30,31)(34,35);
s4 := Sym(35)!( 6,14)( 7,10)( 8,22)( 9,24)(11,26)(12,16)(13,18)(15,20)(17,32)
(19,34)(21,27)(23,28)(25,30)(29,33)(31,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope