include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,10,2,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,2,6}*1200
if this polytope has a name.
Group : SmallGroup(1200,1006)
Rank : 5
Schlafli Type : {5,10,2,6}
Number of vertices, edges, etc : 5, 25, 10, 6, 6
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,10,2,3}*600
3-fold quotients : {5,10,2,2}*400
5-fold quotients : {5,2,2,6}*240
10-fold quotients : {5,2,2,3}*120
15-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)(17,20)
(22,25)(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)(15,20)
(19,24)(21,23);;
s2 := ( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);;
s3 := (28,29)(30,31);;
s4 := (26,30)(27,28)(29,31);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)
(17,20)(22,25)(23,24);
s1 := Sym(31)!( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)
(15,20)(19,24)(21,23);
s2 := Sym(31)!( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25);
s3 := Sym(31)!(28,29)(30,31);
s4 := Sym(31)!(26,30)(27,28)(29,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope