Polytope of Type {6,100}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,100}*1200b
if this polytope has a name.
Group : SmallGroup(1200,195)
Rank : 3
Schlafli Type : {6,100}
Number of vertices, edges, etc : 6, 300, 100
Order of s0s1s2 : 75
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {6,20}*240b
   25-fold quotients : {6,4}*48b
   50-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)( 63, 64)
( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 83, 84)( 87, 88)( 91, 92)( 95, 96)
( 99,100);;
s1 := (  2,  4)(  5, 17)(  6, 20)(  7, 19)(  8, 18)(  9, 13)( 10, 16)( 11, 15)
( 12, 14)( 21, 97)( 22,100)( 23, 99)( 24, 98)( 25, 93)( 26, 96)( 27, 95)
( 28, 94)( 29, 89)( 30, 92)( 31, 91)( 32, 90)( 33, 85)( 34, 88)( 35, 87)
( 36, 86)( 37, 81)( 38, 84)( 39, 83)( 40, 82)( 41, 77)( 42, 80)( 43, 79)
( 44, 78)( 45, 73)( 46, 76)( 47, 75)( 48, 74)( 49, 69)( 50, 72)( 51, 71)
( 52, 70)( 53, 65)( 54, 68)( 55, 67)( 56, 66)( 57, 61)( 58, 64)( 59, 63)
( 60, 62);;
s2 := (  1, 22)(  2, 21)(  3, 24)(  4, 23)(  5, 38)(  6, 37)(  7, 40)(  8, 39)
(  9, 34)( 10, 33)( 11, 36)( 12, 35)( 13, 30)( 14, 29)( 15, 32)( 16, 31)
( 17, 26)( 18, 25)( 19, 28)( 20, 27)( 41, 98)( 42, 97)( 43,100)( 44, 99)
( 45, 94)( 46, 93)( 47, 96)( 48, 95)( 49, 90)( 50, 89)( 51, 92)( 52, 91)
( 53, 86)( 54, 85)( 55, 88)( 56, 87)( 57, 82)( 58, 81)( 59, 84)( 60, 83)
( 61, 78)( 62, 77)( 63, 80)( 64, 79)( 65, 74)( 66, 73)( 67, 76)( 68, 75)
( 69, 70)( 71, 72);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(100)!(  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)
( 63, 64)( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 83, 84)( 87, 88)( 91, 92)
( 95, 96)( 99,100);
s1 := Sym(100)!(  2,  4)(  5, 17)(  6, 20)(  7, 19)(  8, 18)(  9, 13)( 10, 16)
( 11, 15)( 12, 14)( 21, 97)( 22,100)( 23, 99)( 24, 98)( 25, 93)( 26, 96)
( 27, 95)( 28, 94)( 29, 89)( 30, 92)( 31, 91)( 32, 90)( 33, 85)( 34, 88)
( 35, 87)( 36, 86)( 37, 81)( 38, 84)( 39, 83)( 40, 82)( 41, 77)( 42, 80)
( 43, 79)( 44, 78)( 45, 73)( 46, 76)( 47, 75)( 48, 74)( 49, 69)( 50, 72)
( 51, 71)( 52, 70)( 53, 65)( 54, 68)( 55, 67)( 56, 66)( 57, 61)( 58, 64)
( 59, 63)( 60, 62);
s2 := Sym(100)!(  1, 22)(  2, 21)(  3, 24)(  4, 23)(  5, 38)(  6, 37)(  7, 40)
(  8, 39)(  9, 34)( 10, 33)( 11, 36)( 12, 35)( 13, 30)( 14, 29)( 15, 32)
( 16, 31)( 17, 26)( 18, 25)( 19, 28)( 20, 27)( 41, 98)( 42, 97)( 43,100)
( 44, 99)( 45, 94)( 46, 93)( 47, 96)( 48, 95)( 49, 90)( 50, 89)( 51, 92)
( 52, 91)( 53, 86)( 54, 85)( 55, 88)( 56, 87)( 57, 82)( 58, 81)( 59, 84)
( 60, 83)( 61, 78)( 62, 77)( 63, 80)( 64, 79)( 65, 74)( 66, 73)( 67, 76)
( 68, 75)( 69, 70)( 71, 72);
poly := sub<Sym(100)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope