include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {75,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {75,6}*1200
if this polytope has a name.
Group : SmallGroup(1200,195)
Rank : 3
Schlafli Type : {75,6}
Number of vertices, edges, etc : 100, 300, 8
Order of s0s1s2 : 100
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {15,6}*240
12-fold quotients : {25,2}*100
25-fold quotients : {3,6}*48
50-fold quotients : {3,3}*24
60-fold quotients : {5,2}*20
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)( 11, 16)
( 12, 15)( 21, 97)( 22, 98)( 23,100)( 24, 99)( 25, 93)( 26, 94)( 27, 96)
( 28, 95)( 29, 89)( 30, 90)( 31, 92)( 32, 91)( 33, 85)( 34, 86)( 35, 88)
( 36, 87)( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)
( 44, 79)( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 69)( 50, 70)( 51, 72)
( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)( 58, 62)( 59, 64)
( 60, 63);;
s1 := ( 1, 21)( 2, 24)( 3, 23)( 4, 22)( 5, 37)( 6, 40)( 7, 39)( 8, 38)
( 9, 33)( 10, 36)( 11, 35)( 12, 34)( 13, 29)( 14, 32)( 15, 31)( 16, 30)
( 17, 25)( 18, 28)( 19, 27)( 20, 26)( 41, 97)( 42,100)( 43, 99)( 44, 98)
( 45, 93)( 46, 96)( 47, 95)( 48, 94)( 49, 89)( 50, 92)( 51, 91)( 52, 90)
( 53, 85)( 54, 88)( 55, 87)( 56, 86)( 57, 81)( 58, 84)( 59, 83)( 60, 82)
( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 65, 73)( 66, 76)( 67, 75)( 68, 74)
( 70, 72);;
s2 := ( 1, 2)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)(29,30)(33,34)(37,38)
(41,42)(45,46)(49,50)(53,54)(57,58)(61,62)(65,66)(69,70)(73,74)(77,78)(81,82)
(85,86)(89,90)(93,94)(97,98);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)
( 11, 16)( 12, 15)( 21, 97)( 22, 98)( 23,100)( 24, 99)( 25, 93)( 26, 94)
( 27, 96)( 28, 95)( 29, 89)( 30, 90)( 31, 92)( 32, 91)( 33, 85)( 34, 86)
( 35, 88)( 36, 87)( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)
( 43, 80)( 44, 79)( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 69)( 50, 70)
( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)( 58, 62)
( 59, 64)( 60, 63);
s1 := Sym(100)!( 1, 21)( 2, 24)( 3, 23)( 4, 22)( 5, 37)( 6, 40)( 7, 39)
( 8, 38)( 9, 33)( 10, 36)( 11, 35)( 12, 34)( 13, 29)( 14, 32)( 15, 31)
( 16, 30)( 17, 25)( 18, 28)( 19, 27)( 20, 26)( 41, 97)( 42,100)( 43, 99)
( 44, 98)( 45, 93)( 46, 96)( 47, 95)( 48, 94)( 49, 89)( 50, 92)( 51, 91)
( 52, 90)( 53, 85)( 54, 88)( 55, 87)( 56, 86)( 57, 81)( 58, 84)( 59, 83)
( 60, 82)( 61, 77)( 62, 80)( 63, 79)( 64, 78)( 65, 73)( 66, 76)( 67, 75)
( 68, 74)( 70, 72);
s2 := Sym(100)!( 1, 2)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)(29,30)(33,34)
(37,38)(41,42)(45,46)(49,50)(53,54)(57,58)(61,62)(65,66)(69,70)(73,74)(77,78)
(81,82)(85,86)(89,90)(93,94)(97,98);
poly := sub<Sym(100)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0 >;
References : None.
to this polytope