Polytope of Type {2,4,75}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,75}*1200
if this polytope has a name.
Group : SmallGroup(1200,198)
Rank : 4
Schlafli Type : {2,4,75}
Number of vertices, edges, etc : 2, 4, 150, 75
Order of s0s1s2s3 : 150
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {2,4,15}*240
   25-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102);;
s2 := (  4,  5)(  7, 19)(  8, 21)(  9, 20)( 10, 22)( 11, 15)( 12, 17)( 13, 16)
( 14, 18)( 23, 87)( 24, 89)( 25, 88)( 26, 90)( 27, 83)( 28, 85)( 29, 84)
( 30, 86)( 31, 99)( 32,101)( 33,100)( 34,102)( 35, 95)( 36, 97)( 37, 96)
( 38, 98)( 39, 91)( 40, 93)( 41, 92)( 42, 94)( 43, 67)( 44, 69)( 45, 68)
( 46, 70)( 47, 63)( 48, 65)( 49, 64)( 50, 66)( 51, 79)( 52, 81)( 53, 80)
( 54, 82)( 55, 75)( 56, 77)( 57, 76)( 58, 78)( 59, 71)( 60, 73)( 61, 72)
( 62, 74);;
s3 := (  3, 23)(  4, 26)(  5, 25)(  6, 24)(  7, 39)(  8, 42)(  9, 41)( 10, 40)
( 11, 35)( 12, 38)( 13, 37)( 14, 36)( 15, 31)( 16, 34)( 17, 33)( 18, 32)
( 19, 27)( 20, 30)( 21, 29)( 22, 28)( 43, 87)( 44, 90)( 45, 89)( 46, 88)
( 47, 83)( 48, 86)( 49, 85)( 50, 84)( 51, 99)( 52,102)( 53,101)( 54,100)
( 55, 95)( 56, 98)( 57, 97)( 58, 96)( 59, 91)( 60, 94)( 61, 93)( 62, 92)
( 63, 67)( 64, 70)( 65, 69)( 66, 68)( 71, 79)( 72, 82)( 73, 81)( 74, 80)
( 76, 78);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(102)!(1,2);
s1 := Sym(102)!(  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102);
s2 := Sym(102)!(  4,  5)(  7, 19)(  8, 21)(  9, 20)( 10, 22)( 11, 15)( 12, 17)
( 13, 16)( 14, 18)( 23, 87)( 24, 89)( 25, 88)( 26, 90)( 27, 83)( 28, 85)
( 29, 84)( 30, 86)( 31, 99)( 32,101)( 33,100)( 34,102)( 35, 95)( 36, 97)
( 37, 96)( 38, 98)( 39, 91)( 40, 93)( 41, 92)( 42, 94)( 43, 67)( 44, 69)
( 45, 68)( 46, 70)( 47, 63)( 48, 65)( 49, 64)( 50, 66)( 51, 79)( 52, 81)
( 53, 80)( 54, 82)( 55, 75)( 56, 77)( 57, 76)( 58, 78)( 59, 71)( 60, 73)
( 61, 72)( 62, 74);
s3 := Sym(102)!(  3, 23)(  4, 26)(  5, 25)(  6, 24)(  7, 39)(  8, 42)(  9, 41)
( 10, 40)( 11, 35)( 12, 38)( 13, 37)( 14, 36)( 15, 31)( 16, 34)( 17, 33)
( 18, 32)( 19, 27)( 20, 30)( 21, 29)( 22, 28)( 43, 87)( 44, 90)( 45, 89)
( 46, 88)( 47, 83)( 48, 86)( 49, 85)( 50, 84)( 51, 99)( 52,102)( 53,101)
( 54,100)( 55, 95)( 56, 98)( 57, 97)( 58, 96)( 59, 91)( 60, 94)( 61, 93)
( 62, 92)( 63, 67)( 64, 70)( 65, 69)( 66, 68)( 71, 79)( 72, 82)( 73, 81)
( 74, 80)( 76, 78);
poly := sub<Sym(102)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope