Polytope of Type {4,75,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,75,2}*1200
if this polytope has a name.
Group : SmallGroup(1200,198)
Rank : 4
Schlafli Type : {4,75,2}
Number of vertices, edges, etc : 4, 150, 75, 2
Order of s0s1s2s3 : 150
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {4,15,2}*240
   25-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100);;
s1 := (  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 85)( 22, 87)( 23, 86)( 24, 88)( 25, 81)( 26, 83)( 27, 82)
( 28, 84)( 29, 97)( 30, 99)( 31, 98)( 32,100)( 33, 93)( 34, 95)( 35, 94)
( 36, 96)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 65)( 42, 67)( 43, 66)
( 44, 68)( 45, 61)( 46, 63)( 47, 62)( 48, 64)( 49, 77)( 50, 79)( 51, 78)
( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 69)( 58, 71)( 59, 70)
( 60, 72);;
s2 := (  1, 21)(  2, 24)(  3, 23)(  4, 22)(  5, 37)(  6, 40)(  7, 39)(  8, 38)
(  9, 33)( 10, 36)( 11, 35)( 12, 34)( 13, 29)( 14, 32)( 15, 31)( 16, 30)
( 17, 25)( 18, 28)( 19, 27)( 20, 26)( 41, 85)( 42, 88)( 43, 87)( 44, 86)
( 45, 81)( 46, 84)( 47, 83)( 48, 82)( 49, 97)( 50,100)( 51, 99)( 52, 98)
( 53, 93)( 54, 96)( 55, 95)( 56, 94)( 57, 89)( 58, 92)( 59, 91)( 60, 90)
( 61, 65)( 62, 68)( 63, 67)( 64, 66)( 69, 77)( 70, 80)( 71, 79)( 72, 78)
( 74, 76);;
s3 := (101,102);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(102)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100);
s1 := Sym(102)!(  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 85)( 22, 87)( 23, 86)( 24, 88)( 25, 81)( 26, 83)
( 27, 82)( 28, 84)( 29, 97)( 30, 99)( 31, 98)( 32,100)( 33, 93)( 34, 95)
( 35, 94)( 36, 96)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 65)( 42, 67)
( 43, 66)( 44, 68)( 45, 61)( 46, 63)( 47, 62)( 48, 64)( 49, 77)( 50, 79)
( 51, 78)( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 69)( 58, 71)
( 59, 70)( 60, 72);
s2 := Sym(102)!(  1, 21)(  2, 24)(  3, 23)(  4, 22)(  5, 37)(  6, 40)(  7, 39)
(  8, 38)(  9, 33)( 10, 36)( 11, 35)( 12, 34)( 13, 29)( 14, 32)( 15, 31)
( 16, 30)( 17, 25)( 18, 28)( 19, 27)( 20, 26)( 41, 85)( 42, 88)( 43, 87)
( 44, 86)( 45, 81)( 46, 84)( 47, 83)( 48, 82)( 49, 97)( 50,100)( 51, 99)
( 52, 98)( 53, 93)( 54, 96)( 55, 95)( 56, 94)( 57, 89)( 58, 92)( 59, 91)
( 60, 90)( 61, 65)( 62, 68)( 63, 67)( 64, 66)( 69, 77)( 70, 80)( 71, 79)
( 72, 78)( 74, 76);
s3 := Sym(102)!(101,102);
poly := sub<Sym(102)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope