include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,6}*1200a
if this polytope has a name.
Group : SmallGroup(1200,980)
Rank : 4
Schlafli Type : {2,10,6}
Number of vertices, edges, etc : 2, 50, 150, 30
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,6}*600
25-fold quotients : {2,2,6}*48
50-fold quotients : {2,2,3}*24
75-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8, 23)( 9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 18)
( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)( 34, 52)
( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)( 42, 44)
( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)( 63, 68)
( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)( 84,102)
( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)( 92, 94)
(104,107)(105,106)(108,123)(109,127)(110,126)(111,125)(112,124)(113,118)
(114,122)(115,121)(116,120)(117,119)(129,132)(130,131)(133,148)(134,152)
(135,151)(136,150)(137,149)(138,143)(139,147)(140,146)(141,145)(142,144);;
s2 := ( 3, 8)( 4, 14)( 5, 20)( 6, 26)( 10, 15)( 11, 21)( 12, 27)( 13, 23)
( 17, 22)( 19, 24)( 28, 58)( 29, 64)( 30, 70)( 31, 76)( 32, 57)( 33, 53)
( 34, 59)( 35, 65)( 36, 71)( 37, 77)( 38, 73)( 39, 54)( 40, 60)( 41, 66)
( 42, 72)( 43, 68)( 44, 74)( 45, 55)( 46, 61)( 47, 67)( 48, 63)( 49, 69)
( 50, 75)( 51, 56)( 52, 62)( 78, 83)( 79, 89)( 80, 95)( 81,101)( 85, 90)
( 86, 96)( 87,102)( 88, 98)( 92, 97)( 94, 99)(103,133)(104,139)(105,145)
(106,151)(107,132)(108,128)(109,134)(110,140)(111,146)(112,152)(113,148)
(114,129)(115,135)(116,141)(117,147)(118,143)(119,149)(120,130)(121,136)
(122,142)(123,138)(124,144)(125,150)(126,131)(127,137);;
s3 := ( 3,103)( 4,110)( 5,117)( 6,119)( 7,126)( 8,120)( 9,127)( 10,104)
( 11,111)( 12,113)( 13,112)( 14,114)( 15,121)( 16,123)( 17,105)( 18,124)
( 19,106)( 20,108)( 21,115)( 22,122)( 23,116)( 24,118)( 25,125)( 26,107)
( 27,109)( 28, 78)( 29, 85)( 30, 92)( 31, 94)( 32,101)( 33, 95)( 34,102)
( 35, 79)( 36, 86)( 37, 88)( 38, 87)( 39, 89)( 40, 96)( 41, 98)( 42, 80)
( 43, 99)( 44, 81)( 45, 83)( 46, 90)( 47, 97)( 48, 91)( 49, 93)( 50,100)
( 51, 82)( 52, 84)( 53,128)( 54,135)( 55,142)( 56,144)( 57,151)( 58,145)
( 59,152)( 60,129)( 61,136)( 62,138)( 63,137)( 64,139)( 65,146)( 66,148)
( 67,130)( 68,149)( 69,131)( 70,133)( 71,140)( 72,147)( 73,141)( 74,143)
( 75,150)( 76,132)( 77,134);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(152)!(1,2);
s1 := Sym(152)!( 4, 7)( 5, 6)( 8, 23)( 9, 27)( 10, 26)( 11, 25)( 12, 24)
( 13, 18)( 14, 22)( 15, 21)( 16, 20)( 17, 19)( 29, 32)( 30, 31)( 33, 48)
( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 43)( 39, 47)( 40, 46)( 41, 45)
( 42, 44)( 54, 57)( 55, 56)( 58, 73)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 68)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 79, 82)( 80, 81)( 83, 98)
( 84,102)( 85,101)( 86,100)( 87, 99)( 88, 93)( 89, 97)( 90, 96)( 91, 95)
( 92, 94)(104,107)(105,106)(108,123)(109,127)(110,126)(111,125)(112,124)
(113,118)(114,122)(115,121)(116,120)(117,119)(129,132)(130,131)(133,148)
(134,152)(135,151)(136,150)(137,149)(138,143)(139,147)(140,146)(141,145)
(142,144);
s2 := Sym(152)!( 3, 8)( 4, 14)( 5, 20)( 6, 26)( 10, 15)( 11, 21)( 12, 27)
( 13, 23)( 17, 22)( 19, 24)( 28, 58)( 29, 64)( 30, 70)( 31, 76)( 32, 57)
( 33, 53)( 34, 59)( 35, 65)( 36, 71)( 37, 77)( 38, 73)( 39, 54)( 40, 60)
( 41, 66)( 42, 72)( 43, 68)( 44, 74)( 45, 55)( 46, 61)( 47, 67)( 48, 63)
( 49, 69)( 50, 75)( 51, 56)( 52, 62)( 78, 83)( 79, 89)( 80, 95)( 81,101)
( 85, 90)( 86, 96)( 87,102)( 88, 98)( 92, 97)( 94, 99)(103,133)(104,139)
(105,145)(106,151)(107,132)(108,128)(109,134)(110,140)(111,146)(112,152)
(113,148)(114,129)(115,135)(116,141)(117,147)(118,143)(119,149)(120,130)
(121,136)(122,142)(123,138)(124,144)(125,150)(126,131)(127,137);
s3 := Sym(152)!( 3,103)( 4,110)( 5,117)( 6,119)( 7,126)( 8,120)( 9,127)
( 10,104)( 11,111)( 12,113)( 13,112)( 14,114)( 15,121)( 16,123)( 17,105)
( 18,124)( 19,106)( 20,108)( 21,115)( 22,122)( 23,116)( 24,118)( 25,125)
( 26,107)( 27,109)( 28, 78)( 29, 85)( 30, 92)( 31, 94)( 32,101)( 33, 95)
( 34,102)( 35, 79)( 36, 86)( 37, 88)( 38, 87)( 39, 89)( 40, 96)( 41, 98)
( 42, 80)( 43, 99)( 44, 81)( 45, 83)( 46, 90)( 47, 97)( 48, 91)( 49, 93)
( 50,100)( 51, 82)( 52, 84)( 53,128)( 54,135)( 55,142)( 56,144)( 57,151)
( 58,145)( 59,152)( 60,129)( 61,136)( 62,138)( 63,137)( 64,139)( 65,146)
( 66,148)( 67,130)( 68,149)( 69,131)( 70,133)( 71,140)( 72,147)( 73,141)
( 74,143)( 75,150)( 76,132)( 77,134);
poly := sub<Sym(152)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope