include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,15,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,10}*1200
if this polytope has a name.
Group : SmallGroup(1200,983)
Rank : 4
Schlafli Type : {4,15,10}
Number of vertices, edges, etc : 4, 30, 75, 10
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,15,2}*240
25-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100);;
s1 := ( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)( 11, 16)
( 12, 15)( 21, 81)( 22, 82)( 23, 84)( 24, 83)( 25, 97)( 26, 98)( 27,100)
( 28, 99)( 29, 93)( 30, 94)( 31, 96)( 32, 95)( 33, 89)( 34, 90)( 35, 92)
( 36, 91)( 37, 85)( 38, 86)( 39, 88)( 40, 87)( 41, 61)( 42, 62)( 43, 64)
( 44, 63)( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 73)( 50, 74)( 51, 76)
( 52, 75)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)( 59, 68)
( 60, 67);;
s2 := ( 1, 25)( 2, 28)( 3, 27)( 4, 26)( 5, 21)( 6, 24)( 7, 23)( 8, 22)
( 9, 37)( 10, 40)( 11, 39)( 12, 38)( 13, 33)( 14, 36)( 15, 35)( 16, 34)
( 17, 29)( 18, 32)( 19, 31)( 20, 30)( 41, 85)( 42, 88)( 43, 87)( 44, 86)
( 45, 81)( 46, 84)( 47, 83)( 48, 82)( 49, 97)( 50,100)( 51, 99)( 52, 98)
( 53, 93)( 54, 96)( 55, 95)( 56, 94)( 57, 89)( 58, 92)( 59, 91)( 60, 90)
( 61, 65)( 62, 68)( 63, 67)( 64, 66)( 69, 77)( 70, 80)( 71, 79)( 72, 78)
( 74, 76);;
s3 := ( 5, 17)( 6, 18)( 7, 19)( 8, 20)( 9, 13)( 10, 14)( 11, 15)( 12, 16)
( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 33)( 30, 34)( 31, 35)( 32, 36)
( 45, 57)( 46, 58)( 47, 59)( 48, 60)( 49, 53)( 50, 54)( 51, 55)( 52, 56)
( 65, 77)( 66, 78)( 67, 79)( 68, 80)( 69, 73)( 70, 74)( 71, 75)( 72, 76)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89, 93)( 90, 94)( 91, 95)( 92, 96);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100);
s1 := Sym(100)!( 3, 4)( 5, 17)( 6, 18)( 7, 20)( 8, 19)( 9, 13)( 10, 14)
( 11, 16)( 12, 15)( 21, 81)( 22, 82)( 23, 84)( 24, 83)( 25, 97)( 26, 98)
( 27,100)( 28, 99)( 29, 93)( 30, 94)( 31, 96)( 32, 95)( 33, 89)( 34, 90)
( 35, 92)( 36, 91)( 37, 85)( 38, 86)( 39, 88)( 40, 87)( 41, 61)( 42, 62)
( 43, 64)( 44, 63)( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 73)( 50, 74)
( 51, 76)( 52, 75)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)
( 59, 68)( 60, 67);
s2 := Sym(100)!( 1, 25)( 2, 28)( 3, 27)( 4, 26)( 5, 21)( 6, 24)( 7, 23)
( 8, 22)( 9, 37)( 10, 40)( 11, 39)( 12, 38)( 13, 33)( 14, 36)( 15, 35)
( 16, 34)( 17, 29)( 18, 32)( 19, 31)( 20, 30)( 41, 85)( 42, 88)( 43, 87)
( 44, 86)( 45, 81)( 46, 84)( 47, 83)( 48, 82)( 49, 97)( 50,100)( 51, 99)
( 52, 98)( 53, 93)( 54, 96)( 55, 95)( 56, 94)( 57, 89)( 58, 92)( 59, 91)
( 60, 90)( 61, 65)( 62, 68)( 63, 67)( 64, 66)( 69, 77)( 70, 80)( 71, 79)
( 72, 78)( 74, 76);
s3 := Sym(100)!( 5, 17)( 6, 18)( 7, 19)( 8, 20)( 9, 13)( 10, 14)( 11, 15)
( 12, 16)( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 33)( 30, 34)( 31, 35)
( 32, 36)( 45, 57)( 46, 58)( 47, 59)( 48, 60)( 49, 53)( 50, 54)( 51, 55)
( 52, 56)( 65, 77)( 66, 78)( 67, 79)( 68, 80)( 69, 73)( 70, 74)( 71, 75)
( 72, 76)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89, 93)( 90, 94)( 91, 95)
( 92, 96);
poly := sub<Sym(100)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope