include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,6}*1200d
Also Known As : {20,6}3. if this polytope has another name.
Group : SmallGroup(1200,985)
Rank : 3
Schlafli Type : {20,6}
Number of vertices, edges, etc : 100, 300, 30
Order of s0s1s2 : 3
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {10,6}*300
25-fold quotients : {4,6}*48b
50-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 51)( 2, 55)( 3, 54)( 4, 53)( 5, 52)( 6, 71)( 7, 75)( 8, 74)
( 9, 73)( 10, 72)( 11, 66)( 12, 70)( 13, 69)( 14, 68)( 15, 67)( 16, 61)
( 17, 65)( 18, 64)( 19, 63)( 20, 62)( 21, 56)( 22, 60)( 23, 59)( 24, 58)
( 25, 57)( 26, 76)( 27, 80)( 28, 79)( 29, 78)( 30, 77)( 31, 96)( 32,100)
( 33, 99)( 34, 98)( 35, 97)( 36, 91)( 37, 95)( 38, 94)( 39, 93)( 40, 92)
( 41, 86)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 81)( 47, 85)( 48, 84)
( 49, 83)( 50, 82);;
s1 := ( 1, 2)( 3, 5)( 6, 8)( 9, 10)( 11, 14)( 12, 13)( 16, 20)( 17, 19)
( 22, 25)( 23, 24)( 26, 27)( 28, 30)( 31, 33)( 34, 35)( 36, 39)( 37, 38)
( 41, 45)( 42, 44)( 47, 50)( 48, 49)( 51, 77)( 52, 76)( 53, 80)( 54, 79)
( 55, 78)( 56, 83)( 57, 82)( 58, 81)( 59, 85)( 60, 84)( 61, 89)( 62, 88)
( 63, 87)( 64, 86)( 65, 90)( 66, 95)( 67, 94)( 68, 93)( 69, 92)( 70, 91)
( 71, 96)( 72,100)( 73, 99)( 74, 98)( 75, 97);;
s2 := ( 2, 25)( 3, 19)( 4, 13)( 5, 7)( 8, 24)( 9, 18)( 10, 12)( 14, 23)
( 15, 17)( 20, 22)( 26, 76)( 27,100)( 28, 94)( 29, 88)( 30, 82)( 31, 81)
( 32, 80)( 33, 99)( 34, 93)( 35, 87)( 36, 86)( 37, 85)( 38, 79)( 39, 98)
( 40, 92)( 41, 91)( 42, 90)( 43, 84)( 44, 78)( 45, 97)( 46, 96)( 47, 95)
( 48, 89)( 49, 83)( 50, 77)( 52, 75)( 53, 69)( 54, 63)( 55, 57)( 58, 74)
( 59, 68)( 60, 62)( 64, 73)( 65, 67)( 70, 72);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 1, 51)( 2, 55)( 3, 54)( 4, 53)( 5, 52)( 6, 71)( 7, 75)
( 8, 74)( 9, 73)( 10, 72)( 11, 66)( 12, 70)( 13, 69)( 14, 68)( 15, 67)
( 16, 61)( 17, 65)( 18, 64)( 19, 63)( 20, 62)( 21, 56)( 22, 60)( 23, 59)
( 24, 58)( 25, 57)( 26, 76)( 27, 80)( 28, 79)( 29, 78)( 30, 77)( 31, 96)
( 32,100)( 33, 99)( 34, 98)( 35, 97)( 36, 91)( 37, 95)( 38, 94)( 39, 93)
( 40, 92)( 41, 86)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 81)( 47, 85)
( 48, 84)( 49, 83)( 50, 82);
s1 := Sym(100)!( 1, 2)( 3, 5)( 6, 8)( 9, 10)( 11, 14)( 12, 13)( 16, 20)
( 17, 19)( 22, 25)( 23, 24)( 26, 27)( 28, 30)( 31, 33)( 34, 35)( 36, 39)
( 37, 38)( 41, 45)( 42, 44)( 47, 50)( 48, 49)( 51, 77)( 52, 76)( 53, 80)
( 54, 79)( 55, 78)( 56, 83)( 57, 82)( 58, 81)( 59, 85)( 60, 84)( 61, 89)
( 62, 88)( 63, 87)( 64, 86)( 65, 90)( 66, 95)( 67, 94)( 68, 93)( 69, 92)
( 70, 91)( 71, 96)( 72,100)( 73, 99)( 74, 98)( 75, 97);
s2 := Sym(100)!( 2, 25)( 3, 19)( 4, 13)( 5, 7)( 8, 24)( 9, 18)( 10, 12)
( 14, 23)( 15, 17)( 20, 22)( 26, 76)( 27,100)( 28, 94)( 29, 88)( 30, 82)
( 31, 81)( 32, 80)( 33, 99)( 34, 93)( 35, 87)( 36, 86)( 37, 85)( 38, 79)
( 39, 98)( 40, 92)( 41, 91)( 42, 90)( 43, 84)( 44, 78)( 45, 97)( 46, 96)
( 47, 95)( 48, 89)( 49, 83)( 50, 77)( 52, 75)( 53, 69)( 54, 63)( 55, 57)
( 58, 74)( 59, 68)( 60, 62)( 64, 73)( 65, 67)( 70, 72);
poly := sub<Sym(100)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope