include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,20}*1200
Also Known As : {3,20}6. if this polytope has another name.
Group : SmallGroup(1200,985)
Rank : 3
Schlafli Type : {3,20}
Number of vertices, edges, etc : 30, 300, 200
Order of s0s1s2 : 6
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {3,10}*300
25-fold quotients : {3,4}*48
50-fold quotients : {3,4}*24
100-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)( 13, 16)
( 14, 17)( 15, 18)( 31, 50)( 32, 46)( 33, 47)( 34, 48)( 35, 49)( 36, 44)
( 37, 45)( 38, 41)( 39, 42)( 40, 43)( 51, 76)( 52, 77)( 53, 78)( 54, 79)
( 55, 80)( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)( 62, 95)
( 63, 91)( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)( 70, 87)
( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 81);;
s1 := ( 2, 25)( 3, 19)( 4, 13)( 5, 7)( 8, 24)( 9, 18)( 10, 12)( 14, 23)
( 15, 17)( 20, 22)( 26, 76)( 27,100)( 28, 94)( 29, 88)( 30, 82)( 31, 81)
( 32, 80)( 33, 99)( 34, 93)( 35, 87)( 36, 86)( 37, 85)( 38, 79)( 39, 98)
( 40, 92)( 41, 91)( 42, 90)( 43, 84)( 44, 78)( 45, 97)( 46, 96)( 47, 95)
( 48, 89)( 49, 83)( 50, 77)( 52, 75)( 53, 69)( 54, 63)( 55, 57)( 58, 74)
( 59, 68)( 60, 62)( 64, 73)( 65, 67)( 70, 72);;
s2 := ( 1, 27)( 2, 26)( 3, 30)( 4, 29)( 5, 28)( 6, 47)( 7, 46)( 8, 50)
( 9, 49)( 10, 48)( 11, 42)( 12, 41)( 13, 45)( 14, 44)( 15, 43)( 16, 37)
( 17, 36)( 18, 40)( 19, 39)( 20, 38)( 21, 32)( 22, 31)( 23, 35)( 24, 34)
( 25, 33)( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)( 57, 96)
( 58,100)( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)
( 66, 87)( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)
( 74, 84)( 75, 83);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(100)!( 6, 25)( 7, 21)( 8, 22)( 9, 23)( 10, 24)( 11, 19)( 12, 20)
( 13, 16)( 14, 17)( 15, 18)( 31, 50)( 32, 46)( 33, 47)( 34, 48)( 35, 49)
( 36, 44)( 37, 45)( 38, 41)( 39, 42)( 40, 43)( 51, 76)( 52, 77)( 53, 78)
( 54, 79)( 55, 80)( 56,100)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61, 94)
( 62, 95)( 63, 91)( 64, 92)( 65, 93)( 66, 88)( 67, 89)( 68, 90)( 69, 86)
( 70, 87)( 71, 82)( 72, 83)( 73, 84)( 74, 85)( 75, 81);
s1 := Sym(100)!( 2, 25)( 3, 19)( 4, 13)( 5, 7)( 8, 24)( 9, 18)( 10, 12)
( 14, 23)( 15, 17)( 20, 22)( 26, 76)( 27,100)( 28, 94)( 29, 88)( 30, 82)
( 31, 81)( 32, 80)( 33, 99)( 34, 93)( 35, 87)( 36, 86)( 37, 85)( 38, 79)
( 39, 98)( 40, 92)( 41, 91)( 42, 90)( 43, 84)( 44, 78)( 45, 97)( 46, 96)
( 47, 95)( 48, 89)( 49, 83)( 50, 77)( 52, 75)( 53, 69)( 54, 63)( 55, 57)
( 58, 74)( 59, 68)( 60, 62)( 64, 73)( 65, 67)( 70, 72);
s2 := Sym(100)!( 1, 27)( 2, 26)( 3, 30)( 4, 29)( 5, 28)( 6, 47)( 7, 46)
( 8, 50)( 9, 49)( 10, 48)( 11, 42)( 12, 41)( 13, 45)( 14, 44)( 15, 43)
( 16, 37)( 17, 36)( 18, 40)( 19, 39)( 20, 38)( 21, 32)( 22, 31)( 23, 35)
( 24, 34)( 25, 33)( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)
( 57, 96)( 58,100)( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)
( 65, 93)( 66, 87)( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)
( 73, 85)( 74, 84)( 75, 83);
poly := sub<Sym(100)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope