Polytope of Type {3,6,34}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,34}*1224
if this polytope has a name.
Group : SmallGroup(1224,139)
Rank : 4
Schlafli Type : {3,6,34}
Number of vertices, edges, etc : 3, 9, 102, 34
Order of s0s1s2s3 : 102
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,34}*408
   6-fold quotients : {3,2,17}*204
   17-fold quotients : {3,6,2}*72
   51-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 18, 35)( 19, 36)( 20, 37)( 21, 38)( 22, 39)( 23, 40)( 24, 41)( 25, 42)
( 26, 43)( 27, 44)( 28, 45)( 29, 46)( 30, 47)( 31, 48)( 32, 49)( 33, 50)
( 34, 51)( 52,103)( 53,104)( 54,105)( 55,106)( 56,107)( 57,108)( 58,109)
( 59,110)( 60,111)( 61,112)( 62,113)( 63,114)( 64,115)( 65,116)( 66,117)
( 67,118)( 68,119)( 69,137)( 70,138)( 71,139)( 72,140)( 73,141)( 74,142)
( 75,143)( 76,144)( 77,145)( 78,146)( 79,147)( 80,148)( 81,149)( 82,150)
( 83,151)( 84,152)( 85,153)( 86,120)( 87,121)( 88,122)( 89,123)( 90,124)
( 91,125)( 92,126)( 93,127)( 94,128)( 95,129)( 96,130)( 97,131)( 98,132)
( 99,133)(100,134)(101,135)(102,136);;
s1 := (  1, 69)(  2, 70)(  3, 71)(  4, 72)(  5, 73)(  6, 74)(  7, 75)(  8, 76)
(  9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 81)( 14, 82)( 15, 83)( 16, 84)
( 17, 85)( 18, 52)( 19, 53)( 20, 54)( 21, 55)( 22, 56)( 23, 57)( 24, 58)
( 25, 59)( 26, 60)( 27, 61)( 28, 62)( 29, 63)( 30, 64)( 31, 65)( 32, 66)
( 33, 67)( 34, 68)( 35, 86)( 36, 87)( 37, 88)( 38, 89)( 39, 90)( 40, 91)
( 41, 92)( 42, 93)( 43, 94)( 44, 95)( 45, 96)( 46, 97)( 47, 98)( 48, 99)
( 49,100)( 50,101)( 51,102)(103,120)(104,121)(105,122)(106,123)(107,124)
(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)
(116,133)(117,134)(118,135)(119,136);;
s2 := (  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)( 43, 44)
( 52,103)( 53,119)( 54,118)( 55,117)( 56,116)( 57,115)( 58,114)( 59,113)
( 60,112)( 61,111)( 62,110)( 63,109)( 64,108)( 65,107)( 66,106)( 67,105)
( 68,104)( 69,120)( 70,136)( 71,135)( 72,134)( 73,133)( 74,132)( 75,131)
( 76,130)( 77,129)( 78,128)( 79,127)( 80,126)( 81,125)( 82,124)( 83,123)
( 84,122)( 85,121)( 86,137)( 87,153)( 88,152)( 89,151)( 90,150)( 91,149)
( 92,148)( 93,147)( 94,146)( 95,145)( 96,144)( 97,143)( 98,142)( 99,141)
(100,140)(101,139)(102,138);;
s3 := (  1,  2)(  3, 17)(  4, 16)(  5, 15)(  6, 14)(  7, 13)(  8, 12)(  9, 11)
( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)( 26, 28)
( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)( 43, 45)
( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)( 60, 62)
( 69, 70)( 71, 85)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)( 77, 79)
( 86, 87)( 88,102)( 89,101)( 90,100)( 91, 99)( 92, 98)( 93, 97)( 94, 96)
(103,104)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)
(120,121)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)(128,130)
(137,138)(139,153)(140,152)(141,151)(142,150)(143,149)(144,148)(145,147);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(153)!( 18, 35)( 19, 36)( 20, 37)( 21, 38)( 22, 39)( 23, 40)( 24, 41)
( 25, 42)( 26, 43)( 27, 44)( 28, 45)( 29, 46)( 30, 47)( 31, 48)( 32, 49)
( 33, 50)( 34, 51)( 52,103)( 53,104)( 54,105)( 55,106)( 56,107)( 57,108)
( 58,109)( 59,110)( 60,111)( 61,112)( 62,113)( 63,114)( 64,115)( 65,116)
( 66,117)( 67,118)( 68,119)( 69,137)( 70,138)( 71,139)( 72,140)( 73,141)
( 74,142)( 75,143)( 76,144)( 77,145)( 78,146)( 79,147)( 80,148)( 81,149)
( 82,150)( 83,151)( 84,152)( 85,153)( 86,120)( 87,121)( 88,122)( 89,123)
( 90,124)( 91,125)( 92,126)( 93,127)( 94,128)( 95,129)( 96,130)( 97,131)
( 98,132)( 99,133)(100,134)(101,135)(102,136);
s1 := Sym(153)!(  1, 69)(  2, 70)(  3, 71)(  4, 72)(  5, 73)(  6, 74)(  7, 75)
(  8, 76)(  9, 77)( 10, 78)( 11, 79)( 12, 80)( 13, 81)( 14, 82)( 15, 83)
( 16, 84)( 17, 85)( 18, 52)( 19, 53)( 20, 54)( 21, 55)( 22, 56)( 23, 57)
( 24, 58)( 25, 59)( 26, 60)( 27, 61)( 28, 62)( 29, 63)( 30, 64)( 31, 65)
( 32, 66)( 33, 67)( 34, 68)( 35, 86)( 36, 87)( 37, 88)( 38, 89)( 39, 90)
( 40, 91)( 41, 92)( 42, 93)( 43, 94)( 44, 95)( 45, 96)( 46, 97)( 47, 98)
( 48, 99)( 49,100)( 50,101)( 51,102)(103,120)(104,121)(105,122)(106,123)
(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)
(115,132)(116,133)(117,134)(118,135)(119,136);
s2 := Sym(153)!(  2, 17)(  3, 16)(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)
(  9, 10)( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)
( 26, 27)( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)
( 43, 44)( 52,103)( 53,119)( 54,118)( 55,117)( 56,116)( 57,115)( 58,114)
( 59,113)( 60,112)( 61,111)( 62,110)( 63,109)( 64,108)( 65,107)( 66,106)
( 67,105)( 68,104)( 69,120)( 70,136)( 71,135)( 72,134)( 73,133)( 74,132)
( 75,131)( 76,130)( 77,129)( 78,128)( 79,127)( 80,126)( 81,125)( 82,124)
( 83,123)( 84,122)( 85,121)( 86,137)( 87,153)( 88,152)( 89,151)( 90,150)
( 91,149)( 92,148)( 93,147)( 94,146)( 95,145)( 96,144)( 97,143)( 98,142)
( 99,141)(100,140)(101,139)(102,138);
s3 := Sym(153)!(  1,  2)(  3, 17)(  4, 16)(  5, 15)(  6, 14)(  7, 13)(  8, 12)
(  9, 11)( 18, 19)( 20, 34)( 21, 33)( 22, 32)( 23, 31)( 24, 30)( 25, 29)
( 26, 28)( 35, 36)( 37, 51)( 38, 50)( 39, 49)( 40, 48)( 41, 47)( 42, 46)
( 43, 45)( 52, 53)( 54, 68)( 55, 67)( 56, 66)( 57, 65)( 58, 64)( 59, 63)
( 60, 62)( 69, 70)( 71, 85)( 72, 84)( 73, 83)( 74, 82)( 75, 81)( 76, 80)
( 77, 79)( 86, 87)( 88,102)( 89,101)( 90,100)( 91, 99)( 92, 98)( 93, 97)
( 94, 96)(103,104)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)
(111,113)(120,121)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)
(128,130)(137,138)(139,153)(140,152)(141,151)(142,150)(143,149)(144,148)
(145,147);
poly := sub<Sym(153)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope