Polytope of Type {9,2,34}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,34}*1224
if this polytope has a name.
Group : SmallGroup(1224,47)
Rank : 4
Schlafli Type : {9,2,34}
Number of vertices, edges, etc : 9, 9, 34, 34
Order of s0s1s2s3 : 306
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,2,17}*612
   3-fold quotients : {3,2,34}*408
   6-fold quotients : {3,2,17}*204
   17-fold quotients : {9,2,2}*72
   51-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)
(32,33)(34,35)(36,37)(38,39)(40,41)(42,43);;
s3 := (10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,30)(27,28)
(29,34)(31,32)(33,38)(35,36)(37,42)(39,40)(41,43);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(43)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(43)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(43)!(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43);
s3 := Sym(43)!(10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,30)
(27,28)(29,34)(31,32)(33,38)(35,36)(37,42)(39,40)(41,43);
poly := sub<Sym(43)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope