include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {39,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {39,6,2}*1248
if this polytope has a name.
Group : SmallGroup(1248,1438)
Rank : 4
Schlafli Type : {39,6,2}
Number of vertices, edges, etc : 52, 156, 8, 2
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
12-fold quotients : {13,2,2}*104
13-fold quotients : {3,6,2}*96
26-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5,49)( 6,51)( 7,50)( 8,52)( 9,45)(10,47)(11,46)(12,48)(13,41)
(14,43)(15,42)(16,44)(17,37)(18,39)(19,38)(20,40)(21,33)(22,35)(23,34)(24,36)
(25,29)(26,31)(27,30)(28,32);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,49)(10,50)(11,52)(12,51)(13,45)(14,46)
(15,48)(16,47)(17,41)(18,42)(19,44)(20,43)(21,37)(22,38)(23,40)(24,39)(25,33)
(26,34)(27,36)(28,35)(31,32);;
s2 := ( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)
(41,44)(45,48)(49,52);;
s3 := (53,54);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!( 2, 3)( 5,49)( 6,51)( 7,50)( 8,52)( 9,45)(10,47)(11,46)(12,48)
(13,41)(14,43)(15,42)(16,44)(17,37)(18,39)(19,38)(20,40)(21,33)(22,35)(23,34)
(24,36)(25,29)(26,31)(27,30)(28,32);
s1 := Sym(54)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,49)(10,50)(11,52)(12,51)(13,45)
(14,46)(15,48)(16,47)(17,41)(18,42)(19,44)(20,43)(21,37)(22,38)(23,40)(24,39)
(25,33)(26,34)(27,36)(28,35)(31,32);
s2 := Sym(54)!( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)
(37,40)(41,44)(45,48)(49,52);
s3 := Sym(54)!(53,54);
poly := sub<Sym(54)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2 >;
to this polytope