include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {52,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {52,6,2}*1248b
if this polytope has a name.
Group : SmallGroup(1248,1438)
Rank : 4
Schlafli Type : {52,6,2}
Number of vertices, edges, etc : 52, 156, 6, 2
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
13-fold quotients : {4,6,2}*96b
26-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5,51)( 6,52)( 7,49)( 8,50)( 9,47)(10,48)(11,45)(12,46)
(13,43)(14,44)(15,41)(16,42)(17,39)(18,40)(19,37)(20,38)(21,35)(22,36)(23,33)
(24,34)(25,31)(26,32)(27,29)(28,30);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,49)(10,51)(11,50)(12,52)(13,45)(14,47)
(15,46)(16,48)(17,41)(18,43)(19,42)(20,44)(21,37)(22,39)(23,38)(24,40)(25,33)
(26,35)(27,34)(28,36)(30,31);;
s2 := ( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)(38,40)
(42,44)(46,48)(50,52);;
s3 := (53,54);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(54)!( 1, 3)( 2, 4)( 5,51)( 6,52)( 7,49)( 8,50)( 9,47)(10,48)(11,45)
(12,46)(13,43)(14,44)(15,41)(16,42)(17,39)(18,40)(19,37)(20,38)(21,35)(22,36)
(23,33)(24,34)(25,31)(26,32)(27,29)(28,30);
s1 := Sym(54)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)( 9,49)(10,51)(11,50)(12,52)(13,45)
(14,47)(15,46)(16,48)(17,41)(18,43)(19,42)(20,44)(21,37)(22,39)(23,38)(24,40)
(25,33)(26,35)(27,34)(28,36)(30,31);
s2 := Sym(54)!( 2, 4)( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32)(34,36)
(38,40)(42,44)(46,48)(50,52);
s3 := Sym(54)!(53,54);
poly := sub<Sym(54)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2 >;
to this polytope