include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,158}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,158}*1264
Also Known As : {4,158|2}. if this polytope has another name.
Group : SmallGroup(1264,34)
Rank : 3
Schlafli Type : {4,158}
Number of vertices, edges, etc : 4, 316, 158
Order of s0s1s2 : 316
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,158}*632
4-fold quotients : {2,79}*316
79-fold quotients : {4,2}*16
158-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (317,396)(318,397)(319,398)(320,399)(321,400)(322,401)(323,402)(324,403)
(325,404)(326,405)(327,406)(328,407)(329,408)(330,409)(331,410)(332,411)
(333,412)(334,413)(335,414)(336,415)(337,416)(338,417)(339,418)(340,419)
(341,420)(342,421)(343,422)(344,423)(345,424)(346,425)(347,426)(348,427)
(349,428)(350,429)(351,430)(352,431)(353,432)(354,433)(355,434)(356,435)
(357,436)(358,437)(359,438)(360,439)(361,440)(362,441)(363,442)(364,443)
(365,444)(366,445)(367,446)(368,447)(369,448)(370,449)(371,450)(372,451)
(373,452)(374,453)(375,454)(376,455)(377,456)(378,457)(379,458)(380,459)
(381,460)(382,461)(383,462)(384,463)(385,464)(386,465)(387,466)(388,467)
(389,468)(390,469)(391,470)(392,471)(393,472)(394,473)(395,474)(475,554)
(476,555)(477,556)(478,557)(479,558)(480,559)(481,560)(482,561)(483,562)
(484,563)(485,564)(486,565)(487,566)(488,567)(489,568)(490,569)(491,570)
(492,571)(493,572)(494,573)(495,574)(496,575)(497,576)(498,577)(499,578)
(500,579)(501,580)(502,581)(503,582)(504,583)(505,584)(506,585)(507,586)
(508,587)(509,588)(510,589)(511,590)(512,591)(513,592)(514,593)(515,594)
(516,595)(517,596)(518,597)(519,598)(520,599)(521,600)(522,601)(523,602)
(524,603)(525,604)(526,605)(527,606)(528,607)(529,608)(530,609)(531,610)
(532,611)(533,612)(534,613)(535,614)(536,615)(537,616)(538,617)(539,618)
(540,619)(541,620)(542,621)(543,622)(544,623)(545,624)(546,625)(547,626)
(548,627)(549,628)(550,629)(551,630)(552,631)(553,632);;
s1 := ( 1,475)( 2,553)( 3,552)( 4,551)( 5,550)( 6,549)( 7,548)( 8,547)
( 9,546)( 10,545)( 11,544)( 12,543)( 13,542)( 14,541)( 15,540)( 16,539)
( 17,538)( 18,537)( 19,536)( 20,535)( 21,534)( 22,533)( 23,532)( 24,531)
( 25,530)( 26,529)( 27,528)( 28,527)( 29,526)( 30,525)( 31,524)( 32,523)
( 33,522)( 34,521)( 35,520)( 36,519)( 37,518)( 38,517)( 39,516)( 40,515)
( 41,514)( 42,513)( 43,512)( 44,511)( 45,510)( 46,509)( 47,508)( 48,507)
( 49,506)( 50,505)( 51,504)( 52,503)( 53,502)( 54,501)( 55,500)( 56,499)
( 57,498)( 58,497)( 59,496)( 60,495)( 61,494)( 62,493)( 63,492)( 64,491)
( 65,490)( 66,489)( 67,488)( 68,487)( 69,486)( 70,485)( 71,484)( 72,483)
( 73,482)( 74,481)( 75,480)( 76,479)( 77,478)( 78,477)( 79,476)( 80,554)
( 81,632)( 82,631)( 83,630)( 84,629)( 85,628)( 86,627)( 87,626)( 88,625)
( 89,624)( 90,623)( 91,622)( 92,621)( 93,620)( 94,619)( 95,618)( 96,617)
( 97,616)( 98,615)( 99,614)(100,613)(101,612)(102,611)(103,610)(104,609)
(105,608)(106,607)(107,606)(108,605)(109,604)(110,603)(111,602)(112,601)
(113,600)(114,599)(115,598)(116,597)(117,596)(118,595)(119,594)(120,593)
(121,592)(122,591)(123,590)(124,589)(125,588)(126,587)(127,586)(128,585)
(129,584)(130,583)(131,582)(132,581)(133,580)(134,579)(135,578)(136,577)
(137,576)(138,575)(139,574)(140,573)(141,572)(142,571)(143,570)(144,569)
(145,568)(146,567)(147,566)(148,565)(149,564)(150,563)(151,562)(152,561)
(153,560)(154,559)(155,558)(156,557)(157,556)(158,555)(159,317)(160,395)
(161,394)(162,393)(163,392)(164,391)(165,390)(166,389)(167,388)(168,387)
(169,386)(170,385)(171,384)(172,383)(173,382)(174,381)(175,380)(176,379)
(177,378)(178,377)(179,376)(180,375)(181,374)(182,373)(183,372)(184,371)
(185,370)(186,369)(187,368)(188,367)(189,366)(190,365)(191,364)(192,363)
(193,362)(194,361)(195,360)(196,359)(197,358)(198,357)(199,356)(200,355)
(201,354)(202,353)(203,352)(204,351)(205,350)(206,349)(207,348)(208,347)
(209,346)(210,345)(211,344)(212,343)(213,342)(214,341)(215,340)(216,339)
(217,338)(218,337)(219,336)(220,335)(221,334)(222,333)(223,332)(224,331)
(225,330)(226,329)(227,328)(228,327)(229,326)(230,325)(231,324)(232,323)
(233,322)(234,321)(235,320)(236,319)(237,318)(238,396)(239,474)(240,473)
(241,472)(242,471)(243,470)(244,469)(245,468)(246,467)(247,466)(248,465)
(249,464)(250,463)(251,462)(252,461)(253,460)(254,459)(255,458)(256,457)
(257,456)(258,455)(259,454)(260,453)(261,452)(262,451)(263,450)(264,449)
(265,448)(266,447)(267,446)(268,445)(269,444)(270,443)(271,442)(272,441)
(273,440)(274,439)(275,438)(276,437)(277,436)(278,435)(279,434)(280,433)
(281,432)(282,431)(283,430)(284,429)(285,428)(286,427)(287,426)(288,425)
(289,424)(290,423)(291,422)(292,421)(293,420)(294,419)(295,418)(296,417)
(297,416)(298,415)(299,414)(300,413)(301,412)(302,411)(303,410)(304,409)
(305,408)(306,407)(307,406)(308,405)(309,404)(310,403)(311,402)(312,401)
(313,400)(314,399)(315,398)(316,397);;
s2 := ( 1,160)( 2,159)( 3,237)( 4,236)( 5,235)( 6,234)( 7,233)( 8,232)
( 9,231)( 10,230)( 11,229)( 12,228)( 13,227)( 14,226)( 15,225)( 16,224)
( 17,223)( 18,222)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)( 24,216)
( 25,215)( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)( 32,208)
( 33,207)( 34,206)( 35,205)( 36,204)( 37,203)( 38,202)( 39,201)( 40,200)
( 41,199)( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)( 48,192)
( 49,191)( 50,190)( 51,189)( 52,188)( 53,187)( 54,186)( 55,185)( 56,184)
( 57,183)( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)( 64,176)
( 65,175)( 66,174)( 67,173)( 68,172)( 69,171)( 70,170)( 71,169)( 72,168)
( 73,167)( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)( 80,239)
( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,310)
( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)
( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)
(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)
(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)(120,278)
(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)(128,270)
(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)(136,262)
(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)(144,254)
(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)(152,246)
(153,245)(154,244)(155,243)(156,242)(157,241)(158,240)(317,476)(318,475)
(319,553)(320,552)(321,551)(322,550)(323,549)(324,548)(325,547)(326,546)
(327,545)(328,544)(329,543)(330,542)(331,541)(332,540)(333,539)(334,538)
(335,537)(336,536)(337,535)(338,534)(339,533)(340,532)(341,531)(342,530)
(343,529)(344,528)(345,527)(346,526)(347,525)(348,524)(349,523)(350,522)
(351,521)(352,520)(353,519)(354,518)(355,517)(356,516)(357,515)(358,514)
(359,513)(360,512)(361,511)(362,510)(363,509)(364,508)(365,507)(366,506)
(367,505)(368,504)(369,503)(370,502)(371,501)(372,500)(373,499)(374,498)
(375,497)(376,496)(377,495)(378,494)(379,493)(380,492)(381,491)(382,490)
(383,489)(384,488)(385,487)(386,486)(387,485)(388,484)(389,483)(390,482)
(391,481)(392,480)(393,479)(394,478)(395,477)(396,555)(397,554)(398,632)
(399,631)(400,630)(401,629)(402,628)(403,627)(404,626)(405,625)(406,624)
(407,623)(408,622)(409,621)(410,620)(411,619)(412,618)(413,617)(414,616)
(415,615)(416,614)(417,613)(418,612)(419,611)(420,610)(421,609)(422,608)
(423,607)(424,606)(425,605)(426,604)(427,603)(428,602)(429,601)(430,600)
(431,599)(432,598)(433,597)(434,596)(435,595)(436,594)(437,593)(438,592)
(439,591)(440,590)(441,589)(442,588)(443,587)(444,586)(445,585)(446,584)
(447,583)(448,582)(449,581)(450,580)(451,579)(452,578)(453,577)(454,576)
(455,575)(456,574)(457,573)(458,572)(459,571)(460,570)(461,569)(462,568)
(463,567)(464,566)(465,565)(466,564)(467,563)(468,562)(469,561)(470,560)
(471,559)(472,558)(473,557)(474,556);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(632)!(317,396)(318,397)(319,398)(320,399)(321,400)(322,401)(323,402)
(324,403)(325,404)(326,405)(327,406)(328,407)(329,408)(330,409)(331,410)
(332,411)(333,412)(334,413)(335,414)(336,415)(337,416)(338,417)(339,418)
(340,419)(341,420)(342,421)(343,422)(344,423)(345,424)(346,425)(347,426)
(348,427)(349,428)(350,429)(351,430)(352,431)(353,432)(354,433)(355,434)
(356,435)(357,436)(358,437)(359,438)(360,439)(361,440)(362,441)(363,442)
(364,443)(365,444)(366,445)(367,446)(368,447)(369,448)(370,449)(371,450)
(372,451)(373,452)(374,453)(375,454)(376,455)(377,456)(378,457)(379,458)
(380,459)(381,460)(382,461)(383,462)(384,463)(385,464)(386,465)(387,466)
(388,467)(389,468)(390,469)(391,470)(392,471)(393,472)(394,473)(395,474)
(475,554)(476,555)(477,556)(478,557)(479,558)(480,559)(481,560)(482,561)
(483,562)(484,563)(485,564)(486,565)(487,566)(488,567)(489,568)(490,569)
(491,570)(492,571)(493,572)(494,573)(495,574)(496,575)(497,576)(498,577)
(499,578)(500,579)(501,580)(502,581)(503,582)(504,583)(505,584)(506,585)
(507,586)(508,587)(509,588)(510,589)(511,590)(512,591)(513,592)(514,593)
(515,594)(516,595)(517,596)(518,597)(519,598)(520,599)(521,600)(522,601)
(523,602)(524,603)(525,604)(526,605)(527,606)(528,607)(529,608)(530,609)
(531,610)(532,611)(533,612)(534,613)(535,614)(536,615)(537,616)(538,617)
(539,618)(540,619)(541,620)(542,621)(543,622)(544,623)(545,624)(546,625)
(547,626)(548,627)(549,628)(550,629)(551,630)(552,631)(553,632);
s1 := Sym(632)!( 1,475)( 2,553)( 3,552)( 4,551)( 5,550)( 6,549)( 7,548)
( 8,547)( 9,546)( 10,545)( 11,544)( 12,543)( 13,542)( 14,541)( 15,540)
( 16,539)( 17,538)( 18,537)( 19,536)( 20,535)( 21,534)( 22,533)( 23,532)
( 24,531)( 25,530)( 26,529)( 27,528)( 28,527)( 29,526)( 30,525)( 31,524)
( 32,523)( 33,522)( 34,521)( 35,520)( 36,519)( 37,518)( 38,517)( 39,516)
( 40,515)( 41,514)( 42,513)( 43,512)( 44,511)( 45,510)( 46,509)( 47,508)
( 48,507)( 49,506)( 50,505)( 51,504)( 52,503)( 53,502)( 54,501)( 55,500)
( 56,499)( 57,498)( 58,497)( 59,496)( 60,495)( 61,494)( 62,493)( 63,492)
( 64,491)( 65,490)( 66,489)( 67,488)( 68,487)( 69,486)( 70,485)( 71,484)
( 72,483)( 73,482)( 74,481)( 75,480)( 76,479)( 77,478)( 78,477)( 79,476)
( 80,554)( 81,632)( 82,631)( 83,630)( 84,629)( 85,628)( 86,627)( 87,626)
( 88,625)( 89,624)( 90,623)( 91,622)( 92,621)( 93,620)( 94,619)( 95,618)
( 96,617)( 97,616)( 98,615)( 99,614)(100,613)(101,612)(102,611)(103,610)
(104,609)(105,608)(106,607)(107,606)(108,605)(109,604)(110,603)(111,602)
(112,601)(113,600)(114,599)(115,598)(116,597)(117,596)(118,595)(119,594)
(120,593)(121,592)(122,591)(123,590)(124,589)(125,588)(126,587)(127,586)
(128,585)(129,584)(130,583)(131,582)(132,581)(133,580)(134,579)(135,578)
(136,577)(137,576)(138,575)(139,574)(140,573)(141,572)(142,571)(143,570)
(144,569)(145,568)(146,567)(147,566)(148,565)(149,564)(150,563)(151,562)
(152,561)(153,560)(154,559)(155,558)(156,557)(157,556)(158,555)(159,317)
(160,395)(161,394)(162,393)(163,392)(164,391)(165,390)(166,389)(167,388)
(168,387)(169,386)(170,385)(171,384)(172,383)(173,382)(174,381)(175,380)
(176,379)(177,378)(178,377)(179,376)(180,375)(181,374)(182,373)(183,372)
(184,371)(185,370)(186,369)(187,368)(188,367)(189,366)(190,365)(191,364)
(192,363)(193,362)(194,361)(195,360)(196,359)(197,358)(198,357)(199,356)
(200,355)(201,354)(202,353)(203,352)(204,351)(205,350)(206,349)(207,348)
(208,347)(209,346)(210,345)(211,344)(212,343)(213,342)(214,341)(215,340)
(216,339)(217,338)(218,337)(219,336)(220,335)(221,334)(222,333)(223,332)
(224,331)(225,330)(226,329)(227,328)(228,327)(229,326)(230,325)(231,324)
(232,323)(233,322)(234,321)(235,320)(236,319)(237,318)(238,396)(239,474)
(240,473)(241,472)(242,471)(243,470)(244,469)(245,468)(246,467)(247,466)
(248,465)(249,464)(250,463)(251,462)(252,461)(253,460)(254,459)(255,458)
(256,457)(257,456)(258,455)(259,454)(260,453)(261,452)(262,451)(263,450)
(264,449)(265,448)(266,447)(267,446)(268,445)(269,444)(270,443)(271,442)
(272,441)(273,440)(274,439)(275,438)(276,437)(277,436)(278,435)(279,434)
(280,433)(281,432)(282,431)(283,430)(284,429)(285,428)(286,427)(287,426)
(288,425)(289,424)(290,423)(291,422)(292,421)(293,420)(294,419)(295,418)
(296,417)(297,416)(298,415)(299,414)(300,413)(301,412)(302,411)(303,410)
(304,409)(305,408)(306,407)(307,406)(308,405)(309,404)(310,403)(311,402)
(312,401)(313,400)(314,399)(315,398)(316,397);
s2 := Sym(632)!( 1,160)( 2,159)( 3,237)( 4,236)( 5,235)( 6,234)( 7,233)
( 8,232)( 9,231)( 10,230)( 11,229)( 12,228)( 13,227)( 14,226)( 15,225)
( 16,224)( 17,223)( 18,222)( 19,221)( 20,220)( 21,219)( 22,218)( 23,217)
( 24,216)( 25,215)( 26,214)( 27,213)( 28,212)( 29,211)( 30,210)( 31,209)
( 32,208)( 33,207)( 34,206)( 35,205)( 36,204)( 37,203)( 38,202)( 39,201)
( 40,200)( 41,199)( 42,198)( 43,197)( 44,196)( 45,195)( 46,194)( 47,193)
( 48,192)( 49,191)( 50,190)( 51,189)( 52,188)( 53,187)( 54,186)( 55,185)
( 56,184)( 57,183)( 58,182)( 59,181)( 60,180)( 61,179)( 62,178)( 63,177)
( 64,176)( 65,175)( 66,174)( 67,173)( 68,172)( 69,171)( 70,170)( 71,169)
( 72,168)( 73,167)( 74,166)( 75,165)( 76,164)( 77,163)( 78,162)( 79,161)
( 80,239)( 81,238)( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)
( 88,310)( 89,309)( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)
( 96,302)( 97,301)( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)
(104,294)(105,293)(106,292)(107,291)(108,290)(109,289)(110,288)(111,287)
(112,286)(113,285)(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)
(120,278)(121,277)(122,276)(123,275)(124,274)(125,273)(126,272)(127,271)
(128,270)(129,269)(130,268)(131,267)(132,266)(133,265)(134,264)(135,263)
(136,262)(137,261)(138,260)(139,259)(140,258)(141,257)(142,256)(143,255)
(144,254)(145,253)(146,252)(147,251)(148,250)(149,249)(150,248)(151,247)
(152,246)(153,245)(154,244)(155,243)(156,242)(157,241)(158,240)(317,476)
(318,475)(319,553)(320,552)(321,551)(322,550)(323,549)(324,548)(325,547)
(326,546)(327,545)(328,544)(329,543)(330,542)(331,541)(332,540)(333,539)
(334,538)(335,537)(336,536)(337,535)(338,534)(339,533)(340,532)(341,531)
(342,530)(343,529)(344,528)(345,527)(346,526)(347,525)(348,524)(349,523)
(350,522)(351,521)(352,520)(353,519)(354,518)(355,517)(356,516)(357,515)
(358,514)(359,513)(360,512)(361,511)(362,510)(363,509)(364,508)(365,507)
(366,506)(367,505)(368,504)(369,503)(370,502)(371,501)(372,500)(373,499)
(374,498)(375,497)(376,496)(377,495)(378,494)(379,493)(380,492)(381,491)
(382,490)(383,489)(384,488)(385,487)(386,486)(387,485)(388,484)(389,483)
(390,482)(391,481)(392,480)(393,479)(394,478)(395,477)(396,555)(397,554)
(398,632)(399,631)(400,630)(401,629)(402,628)(403,627)(404,626)(405,625)
(406,624)(407,623)(408,622)(409,621)(410,620)(411,619)(412,618)(413,617)
(414,616)(415,615)(416,614)(417,613)(418,612)(419,611)(420,610)(421,609)
(422,608)(423,607)(424,606)(425,605)(426,604)(427,603)(428,602)(429,601)
(430,600)(431,599)(432,598)(433,597)(434,596)(435,595)(436,594)(437,593)
(438,592)(439,591)(440,590)(441,589)(442,588)(443,587)(444,586)(445,585)
(446,584)(447,583)(448,582)(449,581)(450,580)(451,579)(452,578)(453,577)
(454,576)(455,575)(456,574)(457,573)(458,572)(459,571)(460,570)(461,569)
(462,568)(463,567)(464,566)(465,565)(466,564)(467,563)(468,562)(469,561)
(470,560)(471,559)(472,558)(473,557)(474,556);
poly := sub<Sym(632)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope