Polytope of Type {2,4,8,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,8,10}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1036167)
Rank : 5
Schlafli Type : {2,4,8,10}
Number of vertices, edges, etc : 2, 4, 16, 40, 10
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,4,10}*640
   4-fold quotients : {2,2,4,10}*320, {2,4,2,10}*320
   5-fold quotients : {2,4,8,2}*256b
   8-fold quotients : {2,4,2,5}*160, {2,2,2,10}*160
   10-fold quotients : {2,4,4,2}*128
   16-fold quotients : {2,2,2,5}*80
   20-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)(  8, 88)(  9, 89)( 10, 90)
( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)( 18, 98)
( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)( 26,111)
( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)( 34,119)
( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)( 42,117)
( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)( 48,128)( 49,129)( 50,130)
( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)( 56,136)( 57,137)( 58,138)
( 59,139)( 60,140)( 61,141)( 62,142)( 63,148)( 64,149)( 65,150)( 66,151)
( 67,152)( 68,143)( 69,144)( 70,145)( 71,146)( 72,147)( 73,158)( 74,159)
( 75,160)( 76,161)( 77,162)( 78,153)( 79,154)( 80,155)( 81,156)( 82,157)
(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)(170,250)
(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)(178,258)
(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)(186,271)
(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)(194,279)
(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)(202,277)
(203,283)(204,284)(205,285)(206,286)(207,287)(208,288)(209,289)(210,290)
(211,291)(212,292)(213,293)(214,294)(215,295)(216,296)(217,297)(218,298)
(219,299)(220,300)(221,301)(222,302)(223,308)(224,309)(225,310)(226,311)
(227,312)(228,303)(229,304)(230,305)(231,306)(232,307)(233,318)(234,319)
(235,320)(236,321)(237,322)(238,313)(239,314)(240,315)(241,316)(242,317);;
s2 := ( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)( 35, 40)
( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)( 73, 78)
( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)( 86, 96)
( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)(104,119)
(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)(112,117)
(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)
(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)(148,153)
(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)(166,186)
(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)(174,194)
(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)(182,202)
(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)(210,230)
(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)(218,238)
(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)(246,281)
(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)(254,269)
(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)(262,267)
(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)(290,315)
(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)(298,303)
(299,304)(300,305)(301,306)(302,307);;
s3 := (  3,203)(  4,207)(  5,206)(  6,205)(  7,204)(  8,208)(  9,212)( 10,211)
( 11,210)( 12,209)( 13,218)( 14,222)( 15,221)( 16,220)( 17,219)( 18,213)
( 19,217)( 20,216)( 21,215)( 22,214)( 23,228)( 24,232)( 25,231)( 26,230)
( 27,229)( 28,223)( 29,227)( 30,226)( 31,225)( 32,224)( 33,233)( 34,237)
( 35,236)( 36,235)( 37,234)( 38,238)( 39,242)( 40,241)( 41,240)( 42,239)
( 43,163)( 44,167)( 45,166)( 46,165)( 47,164)( 48,168)( 49,172)( 50,171)
( 51,170)( 52,169)( 53,178)( 54,182)( 55,181)( 56,180)( 57,179)( 58,173)
( 59,177)( 60,176)( 61,175)( 62,174)( 63,188)( 64,192)( 65,191)( 66,190)
( 67,189)( 68,183)( 69,187)( 70,186)( 71,185)( 72,184)( 73,193)( 74,197)
( 75,196)( 76,195)( 77,194)( 78,198)( 79,202)( 80,201)( 81,200)( 82,199)
( 83,283)( 84,287)( 85,286)( 86,285)( 87,284)( 88,288)( 89,292)( 90,291)
( 91,290)( 92,289)( 93,298)( 94,302)( 95,301)( 96,300)( 97,299)( 98,293)
( 99,297)(100,296)(101,295)(102,294)(103,308)(104,312)(105,311)(106,310)
(107,309)(108,303)(109,307)(110,306)(111,305)(112,304)(113,313)(114,317)
(115,316)(116,315)(117,314)(118,318)(119,322)(120,321)(121,320)(122,319)
(123,243)(124,247)(125,246)(126,245)(127,244)(128,248)(129,252)(130,251)
(131,250)(132,249)(133,258)(134,262)(135,261)(136,260)(137,259)(138,253)
(139,257)(140,256)(141,255)(142,254)(143,268)(144,272)(145,271)(146,270)
(147,269)(148,263)(149,267)(150,266)(151,265)(152,264)(153,273)(154,277)
(155,276)(156,275)(157,274)(158,278)(159,282)(160,281)(161,280)(162,279);;
s4 := (  3, 44)(  4, 43)(  5, 47)(  6, 46)(  7, 45)(  8, 49)(  9, 48)( 10, 52)
( 11, 51)( 12, 50)( 13, 54)( 14, 53)( 15, 57)( 16, 56)( 17, 55)( 18, 59)
( 19, 58)( 20, 62)( 21, 61)( 22, 60)( 23, 64)( 24, 63)( 25, 67)( 26, 66)
( 27, 65)( 28, 69)( 29, 68)( 30, 72)( 31, 71)( 32, 70)( 33, 74)( 34, 73)
( 35, 77)( 36, 76)( 37, 75)( 38, 79)( 39, 78)( 40, 82)( 41, 81)( 42, 80)
( 83,124)( 84,123)( 85,127)( 86,126)( 87,125)( 88,129)( 89,128)( 90,132)
( 91,131)( 92,130)( 93,134)( 94,133)( 95,137)( 96,136)( 97,135)( 98,139)
( 99,138)(100,142)(101,141)(102,140)(103,144)(104,143)(105,147)(106,146)
(107,145)(108,149)(109,148)(110,152)(111,151)(112,150)(113,154)(114,153)
(115,157)(116,156)(117,155)(118,159)(119,158)(120,162)(121,161)(122,160)
(163,204)(164,203)(165,207)(166,206)(167,205)(168,209)(169,208)(170,212)
(171,211)(172,210)(173,214)(174,213)(175,217)(176,216)(177,215)(178,219)
(179,218)(180,222)(181,221)(182,220)(183,224)(184,223)(185,227)(186,226)
(187,225)(188,229)(189,228)(190,232)(191,231)(192,230)(193,234)(194,233)
(195,237)(196,236)(197,235)(198,239)(199,238)(200,242)(201,241)(202,240)
(243,284)(244,283)(245,287)(246,286)(247,285)(248,289)(249,288)(250,292)
(251,291)(252,290)(253,294)(254,293)(255,297)(256,296)(257,295)(258,299)
(259,298)(260,302)(261,301)(262,300)(263,304)(264,303)(265,307)(266,306)
(267,305)(268,309)(269,308)(270,312)(271,311)(272,310)(273,314)(274,313)
(275,317)(276,316)(277,315)(278,319)(279,318)(280,322)(281,321)(282,320);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!(  3, 83)(  4, 84)(  5, 85)(  6, 86)(  7, 87)(  8, 88)(  9, 89)
( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)
( 18, 98)( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)
( 26,111)( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)
( 34,119)( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)
( 42,117)( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)( 48,128)( 49,129)
( 50,130)( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)( 56,136)( 57,137)
( 58,138)( 59,139)( 60,140)( 61,141)( 62,142)( 63,148)( 64,149)( 65,150)
( 66,151)( 67,152)( 68,143)( 69,144)( 70,145)( 71,146)( 72,147)( 73,158)
( 74,159)( 75,160)( 76,161)( 77,162)( 78,153)( 79,154)( 80,155)( 81,156)
( 82,157)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)
(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)
(178,258)(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)
(186,271)(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)
(194,279)(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)
(202,277)(203,283)(204,284)(205,285)(206,286)(207,287)(208,288)(209,289)
(210,290)(211,291)(212,292)(213,293)(214,294)(215,295)(216,296)(217,297)
(218,298)(219,299)(220,300)(221,301)(222,302)(223,308)(224,309)(225,310)
(226,311)(227,312)(228,303)(229,304)(230,305)(231,306)(232,307)(233,318)
(234,319)(235,320)(236,321)(237,322)(238,313)(239,314)(240,315)(241,316)
(242,317);
s2 := Sym(322)!( 23, 28)( 24, 29)( 25, 30)( 26, 31)( 27, 32)( 33, 38)( 34, 39)
( 35, 40)( 36, 41)( 37, 42)( 63, 68)( 64, 69)( 65, 70)( 66, 71)( 67, 72)
( 73, 78)( 74, 79)( 75, 80)( 76, 81)( 77, 82)( 83, 93)( 84, 94)( 85, 95)
( 86, 96)( 87, 97)( 88, 98)( 89, 99)( 90,100)( 91,101)( 92,102)(103,118)
(104,119)(105,120)(106,121)(107,122)(108,113)(109,114)(110,115)(111,116)
(112,117)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)
(130,140)(131,141)(132,142)(143,158)(144,159)(145,160)(146,161)(147,162)
(148,153)(149,154)(150,155)(151,156)(152,157)(163,183)(164,184)(165,185)
(166,186)(167,187)(168,188)(169,189)(170,190)(171,191)(172,192)(173,193)
(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)(181,201)
(182,202)(203,223)(204,224)(205,225)(206,226)(207,227)(208,228)(209,229)
(210,230)(211,231)(212,232)(213,233)(214,234)(215,235)(216,236)(217,237)
(218,238)(219,239)(220,240)(221,241)(222,242)(243,278)(244,279)(245,280)
(246,281)(247,282)(248,273)(249,274)(250,275)(251,276)(252,277)(253,268)
(254,269)(255,270)(256,271)(257,272)(258,263)(259,264)(260,265)(261,266)
(262,267)(283,318)(284,319)(285,320)(286,321)(287,322)(288,313)(289,314)
(290,315)(291,316)(292,317)(293,308)(294,309)(295,310)(296,311)(297,312)
(298,303)(299,304)(300,305)(301,306)(302,307);
s3 := Sym(322)!(  3,203)(  4,207)(  5,206)(  6,205)(  7,204)(  8,208)(  9,212)
( 10,211)( 11,210)( 12,209)( 13,218)( 14,222)( 15,221)( 16,220)( 17,219)
( 18,213)( 19,217)( 20,216)( 21,215)( 22,214)( 23,228)( 24,232)( 25,231)
( 26,230)( 27,229)( 28,223)( 29,227)( 30,226)( 31,225)( 32,224)( 33,233)
( 34,237)( 35,236)( 36,235)( 37,234)( 38,238)( 39,242)( 40,241)( 41,240)
( 42,239)( 43,163)( 44,167)( 45,166)( 46,165)( 47,164)( 48,168)( 49,172)
( 50,171)( 51,170)( 52,169)( 53,178)( 54,182)( 55,181)( 56,180)( 57,179)
( 58,173)( 59,177)( 60,176)( 61,175)( 62,174)( 63,188)( 64,192)( 65,191)
( 66,190)( 67,189)( 68,183)( 69,187)( 70,186)( 71,185)( 72,184)( 73,193)
( 74,197)( 75,196)( 76,195)( 77,194)( 78,198)( 79,202)( 80,201)( 81,200)
( 82,199)( 83,283)( 84,287)( 85,286)( 86,285)( 87,284)( 88,288)( 89,292)
( 90,291)( 91,290)( 92,289)( 93,298)( 94,302)( 95,301)( 96,300)( 97,299)
( 98,293)( 99,297)(100,296)(101,295)(102,294)(103,308)(104,312)(105,311)
(106,310)(107,309)(108,303)(109,307)(110,306)(111,305)(112,304)(113,313)
(114,317)(115,316)(116,315)(117,314)(118,318)(119,322)(120,321)(121,320)
(122,319)(123,243)(124,247)(125,246)(126,245)(127,244)(128,248)(129,252)
(130,251)(131,250)(132,249)(133,258)(134,262)(135,261)(136,260)(137,259)
(138,253)(139,257)(140,256)(141,255)(142,254)(143,268)(144,272)(145,271)
(146,270)(147,269)(148,263)(149,267)(150,266)(151,265)(152,264)(153,273)
(154,277)(155,276)(156,275)(157,274)(158,278)(159,282)(160,281)(161,280)
(162,279);
s4 := Sym(322)!(  3, 44)(  4, 43)(  5, 47)(  6, 46)(  7, 45)(  8, 49)(  9, 48)
( 10, 52)( 11, 51)( 12, 50)( 13, 54)( 14, 53)( 15, 57)( 16, 56)( 17, 55)
( 18, 59)( 19, 58)( 20, 62)( 21, 61)( 22, 60)( 23, 64)( 24, 63)( 25, 67)
( 26, 66)( 27, 65)( 28, 69)( 29, 68)( 30, 72)( 31, 71)( 32, 70)( 33, 74)
( 34, 73)( 35, 77)( 36, 76)( 37, 75)( 38, 79)( 39, 78)( 40, 82)( 41, 81)
( 42, 80)( 83,124)( 84,123)( 85,127)( 86,126)( 87,125)( 88,129)( 89,128)
( 90,132)( 91,131)( 92,130)( 93,134)( 94,133)( 95,137)( 96,136)( 97,135)
( 98,139)( 99,138)(100,142)(101,141)(102,140)(103,144)(104,143)(105,147)
(106,146)(107,145)(108,149)(109,148)(110,152)(111,151)(112,150)(113,154)
(114,153)(115,157)(116,156)(117,155)(118,159)(119,158)(120,162)(121,161)
(122,160)(163,204)(164,203)(165,207)(166,206)(167,205)(168,209)(169,208)
(170,212)(171,211)(172,210)(173,214)(174,213)(175,217)(176,216)(177,215)
(178,219)(179,218)(180,222)(181,221)(182,220)(183,224)(184,223)(185,227)
(186,226)(187,225)(188,229)(189,228)(190,232)(191,231)(192,230)(193,234)
(194,233)(195,237)(196,236)(197,235)(198,239)(199,238)(200,242)(201,241)
(202,240)(243,284)(244,283)(245,287)(246,286)(247,285)(248,289)(249,288)
(250,292)(251,291)(252,290)(253,294)(254,293)(255,297)(256,296)(257,295)
(258,299)(259,298)(260,302)(261,301)(262,300)(263,304)(264,303)(265,307)
(266,306)(267,305)(268,309)(269,308)(270,312)(271,311)(272,310)(273,314)
(274,313)(275,317)(276,316)(277,315)(278,319)(279,318)(280,322)(281,321)
(282,320);
poly := sub<Sym(322)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope