include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,2,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,2,40}*1280
if this polytope has a name.
Group : SmallGroup(1280,1044763)
Rank : 5
Schlafli Type : {2,4,2,40}
Number of vertices, edges, etc : 2, 4, 4, 40, 40
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,2,20}*640, {2,2,2,40}*640
4-fold quotients : {2,2,2,20}*320, {2,4,2,10}*320
5-fold quotients : {2,4,2,8}*256
8-fold quotients : {2,4,2,5}*160, {2,2,2,10}*160
10-fold quotients : {2,4,2,4}*128, {2,2,2,8}*128
16-fold quotients : {2,2,2,5}*80
20-fold quotients : {2,2,2,4}*64, {2,4,2,2}*64
40-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4)(5,6);;
s3 := ( 8, 9)(10,11)(12,15)(13,17)(14,16)(18,19)(20,25)(21,27)(22,26)(23,29)
(24,28)(31,36)(32,35)(33,38)(34,37)(39,40)(41,44)(42,43)(45,46);;
s4 := ( 7,13)( 8,10)( 9,21)(11,23)(12,16)(14,18)(15,31)(17,33)(19,24)(20,26)
(22,28)(25,39)(27,41)(29,34)(30,35)(32,37)(36,45)(38,42)(40,43)(44,46);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!(4,5);
s2 := Sym(46)!(3,4)(5,6);
s3 := Sym(46)!( 8, 9)(10,11)(12,15)(13,17)(14,16)(18,19)(20,25)(21,27)(22,26)
(23,29)(24,28)(31,36)(32,35)(33,38)(34,37)(39,40)(41,44)(42,43)(45,46);
s4 := Sym(46)!( 7,13)( 8,10)( 9,21)(11,23)(12,16)(14,18)(15,31)(17,33)(19,24)
(20,26)(22,28)(25,39)(27,41)(29,34)(30,35)(32,37)(36,45)(38,42)(40,43)(44,46);
poly := sub<Sym(46)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope