include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,10,8,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,10,8,2}*1280
if this polytope has a name.
Group : SmallGroup(1280,1083341)
Rank : 6
Schlafli Type : {2,2,10,8,2}
Number of vertices, edges, etc : 2, 2, 10, 40, 8, 2
Order of s0s1s2s3s4s5 : 40
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,10,4,2}*640
4-fold quotients : {2,2,10,2,2}*320
5-fold quotients : {2,2,2,8,2}*256
8-fold quotients : {2,2,5,2,2}*160
10-fold quotients : {2,2,2,4,2}*128
20-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 9)( 7, 8)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28)
(31,34)(32,33)(36,39)(37,38)(41,44)(42,43);;
s3 := ( 5, 6)( 7, 9)(10,11)(12,14)(15,21)(16,20)(17,24)(18,23)(19,22)(25,41)
(26,40)(27,44)(28,43)(29,42)(30,36)(31,35)(32,39)(33,38)(34,37);;
s4 := ( 5,25)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)(12,32)(13,33)(14,34)
(15,40)(16,41)(17,42)(18,43)(19,44)(20,35)(21,36)(22,37)(23,38)(24,39);;
s5 := (45,46);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(46)!(1,2);
s1 := Sym(46)!(3,4);
s2 := Sym(46)!( 6, 9)( 7, 8)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)
(27,28)(31,34)(32,33)(36,39)(37,38)(41,44)(42,43);
s3 := Sym(46)!( 5, 6)( 7, 9)(10,11)(12,14)(15,21)(16,20)(17,24)(18,23)(19,22)
(25,41)(26,40)(27,44)(28,43)(29,42)(30,36)(31,35)(32,39)(33,38)(34,37);
s4 := Sym(46)!( 5,25)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)(12,32)(13,33)
(14,34)(15,40)(16,41)(17,42)(18,43)(19,44)(20,35)(21,36)(22,37)(23,38)(24,39);
s5 := Sym(46)!(45,46);
poly := sub<Sym(46)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope