Polytope of Type {8,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,5}*1280
if this polytope has a name.
Group : SmallGroup(1280,1116393)
Rank : 3
Schlafli Type : {8,5}
Number of vertices, edges, etc : 128, 320, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,5}*640a, {4,5}*640, {8,5}*640b
   4-fold quotients : {8,5}*320a, {8,5}*320b, {4,5}*320
   8-fold quotients : {4,5}*160
   64-fold quotients : {2,5}*20
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,125)(  2,126)(  3,127)(  4,128)(  5,122)(  6,121)(  7,124)(  8,123)
(  9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)( 16,114)
( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)( 24,106)
( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)( 40, 91)
( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)( 48, 82)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)( 56, 74)
( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)( 64, 67);;
s1 := (  5,  6)(  7,  8)(  9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)( 20, 26)
( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)( 36, 44)
( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)( 54, 55)
( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)( 68,124)
( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)( 76,116)
( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)( 84, 99)
( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)( 92,108)
( 93,110)( 94,109)( 95,112)( 96,111);;
s2 := (  5,  6)(  7,  8)(  9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 86)( 14, 85)
( 15, 88)( 16, 87)( 17,105)( 18,106)( 19,107)( 20,108)( 21,110)( 22,109)
( 23,112)( 24,111)( 25, 57)( 26, 58)( 27, 59)( 28, 60)( 29, 62)( 30, 61)
( 31, 64)( 32, 63)( 33, 35)( 34, 36)( 37, 40)( 38, 39)( 41,113)( 42,114)
( 43,115)( 44,116)( 45,118)( 46,117)( 47,120)( 48,119)( 49, 75)( 50, 76)
( 51, 73)( 52, 74)( 53, 80)( 54, 79)( 55, 78)( 56, 77)( 65, 98)( 66, 97)
( 67,100)( 68, 99)( 69,101)( 70,102)( 71,103)( 72,104)( 89, 92)( 90, 91)
( 93, 95)( 94, 96)(121,122)(123,124);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1,125)(  2,126)(  3,127)(  4,128)(  5,122)(  6,121)(  7,124)
(  8,123)(  9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)
( 16,114)( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)
( 24,106)( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)
( 40, 91)( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)
( 48, 82)( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)
( 56, 74)( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)
( 64, 67);
s1 := Sym(128)!(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)
( 20, 26)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)
( 36, 44)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)
( 54, 55)( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)
( 68,124)( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)
( 76,116)( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)
( 84, 99)( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)
( 92,108)( 93,110)( 94,109)( 95,112)( 96,111);
s2 := Sym(128)!(  5,  6)(  7,  8)(  9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 86)
( 14, 85)( 15, 88)( 16, 87)( 17,105)( 18,106)( 19,107)( 20,108)( 21,110)
( 22,109)( 23,112)( 24,111)( 25, 57)( 26, 58)( 27, 59)( 28, 60)( 29, 62)
( 30, 61)( 31, 64)( 32, 63)( 33, 35)( 34, 36)( 37, 40)( 38, 39)( 41,113)
( 42,114)( 43,115)( 44,116)( 45,118)( 46,117)( 47,120)( 48,119)( 49, 75)
( 50, 76)( 51, 73)( 52, 74)( 53, 80)( 54, 79)( 55, 78)( 56, 77)( 65, 98)
( 66, 97)( 67,100)( 68, 99)( 69,101)( 70,102)( 71,103)( 72,104)( 89, 92)
( 90, 91)( 93, 95)( 94, 96)(121,122)(123,124);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope