include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,20}*1280g
if this polytope has a name.
Group : SmallGroup(1280,1116393)
Rank : 3
Schlafli Type : {8,20}
Number of vertices, edges, etc : 32, 320, 80
Order of s0s1s2 : 10
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,10}*640d, {4,20}*640d
4-fold quotients : {8,5}*320b, {4,10}*320b
8-fold quotients : {4,5}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,125)( 2,126)( 3,127)( 4,128)( 5,122)( 6,121)( 7,124)( 8,123)
( 9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)( 16,114)
( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)( 24,106)
( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)( 40, 91)
( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)( 48, 82)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)( 56, 74)
( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)( 64, 67);;
s1 := ( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)( 20, 26)
( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)( 36, 44)
( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)( 54, 55)
( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)( 68,124)
( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)( 76,116)
( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)( 84, 99)
( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)( 92,108)
( 93,110)( 94,109)( 95,112)( 96,111);;
s2 := ( 1, 93)( 2, 94)( 3, 95)( 4, 96)( 5, 89)( 6, 90)( 7, 91)( 8, 92)
( 9, 14)( 10, 13)( 11, 16)( 12, 15)( 17, 54)( 18, 53)( 19, 56)( 20, 55)
( 21, 50)( 22, 49)( 23, 52)( 24, 51)( 25,101)( 26,102)( 27,103)( 28,104)
( 29, 97)( 30, 98)( 31, 99)( 32,100)( 33,125)( 34,126)( 35,127)( 36,128)
( 37,121)( 38,122)( 39,123)( 40,124)( 41, 48)( 42, 47)( 43, 46)( 44, 45)
( 57, 71)( 58, 72)( 59, 69)( 60, 70)( 61, 67)( 62, 68)( 63, 65)( 64, 66)
( 73,109)( 74,110)( 75,111)( 76,112)( 77,105)( 78,106)( 79,107)( 80,108)
( 81, 87)( 82, 88)( 83, 85)( 84, 86)(113,117)(114,118)(115,119)(116,120);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 1,125)( 2,126)( 3,127)( 4,128)( 5,122)( 6,121)( 7,124)
( 8,123)( 9,120)( 10,119)( 11,118)( 12,117)( 13,115)( 14,116)( 15,113)
( 16,114)( 17,112)( 18,111)( 19,110)( 20,109)( 21,107)( 22,108)( 23,105)
( 24,106)( 25,101)( 26,102)( 27,103)( 28,104)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 90)( 38, 89)( 39, 92)
( 40, 91)( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 83)( 46, 84)( 47, 81)
( 48, 82)( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)
( 56, 74)( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 66)( 62, 65)( 63, 68)
( 64, 67);
s1 := Sym(128)!( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 17, 27)( 18, 28)( 19, 25)
( 20, 26)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 33, 41)( 34, 42)( 35, 43)
( 36, 44)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 49, 51)( 50, 52)( 53, 56)
( 54, 55)( 57, 60)( 58, 59)( 61, 63)( 62, 64)( 65,121)( 66,122)( 67,123)
( 68,124)( 69,126)( 70,125)( 71,128)( 72,127)( 73,113)( 74,114)( 75,115)
( 76,116)( 77,118)( 78,117)( 79,120)( 80,119)( 81, 98)( 82, 97)( 83,100)
( 84, 99)( 85,101)( 86,102)( 87,103)( 88,104)( 89,105)( 90,106)( 91,107)
( 92,108)( 93,110)( 94,109)( 95,112)( 96,111);
s2 := Sym(128)!( 1, 93)( 2, 94)( 3, 95)( 4, 96)( 5, 89)( 6, 90)( 7, 91)
( 8, 92)( 9, 14)( 10, 13)( 11, 16)( 12, 15)( 17, 54)( 18, 53)( 19, 56)
( 20, 55)( 21, 50)( 22, 49)( 23, 52)( 24, 51)( 25,101)( 26,102)( 27,103)
( 28,104)( 29, 97)( 30, 98)( 31, 99)( 32,100)( 33,125)( 34,126)( 35,127)
( 36,128)( 37,121)( 38,122)( 39,123)( 40,124)( 41, 48)( 42, 47)( 43, 46)
( 44, 45)( 57, 71)( 58, 72)( 59, 69)( 60, 70)( 61, 67)( 62, 68)( 63, 65)
( 64, 66)( 73,109)( 74,110)( 75,111)( 76,112)( 77,105)( 78,106)( 79,107)
( 80,108)( 81, 87)( 82, 88)( 83, 85)( 84, 86)(113,117)(114,118)(115,119)
(116,120);
poly := sub<Sym(128)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1,
s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0 >;
References : None.
to this polytope