include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,10,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,10,5}*1280
if this polytope has a name.
Group : SmallGroup(1280,1116442)
Rank : 4
Schlafli Type : {4,10,5}
Number of vertices, edges, etc : 4, 64, 80, 16
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,10,5}*640b
4-fold quotients : {2,5,5}*320
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 13)( 10, 14)( 11, 16)( 12, 15)
( 17, 21)( 18, 22)( 19, 24)( 20, 23)( 25, 29)( 26, 30)( 27, 32)( 28, 31)
( 33, 37)( 34, 38)( 35, 40)( 36, 39)( 41, 45)( 42, 46)( 43, 48)( 44, 47)
( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 57, 61)( 58, 62)( 59, 64)( 60, 63)
( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 73, 77)( 74, 78)( 75, 80)( 76, 79)
( 81, 85)( 82, 86)( 83, 88)( 84, 87)( 89, 93)( 90, 94)( 91, 96)( 92, 95)
( 97,101)( 98,102)( 99,104)(100,103)(105,109)(106,110)(107,112)(108,111)
(113,117)(114,118)(115,120)(116,119)(121,125)(122,126)(123,128)(124,127);;
s1 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 27)( 18, 28)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 29)( 24, 30)
( 33, 43)( 34, 44)( 35, 41)( 36, 42)( 37, 47)( 38, 48)( 39, 45)( 40, 46)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65,123)( 66,124)( 67,121)( 68,122)( 69,127)( 70,128)( 71,125)( 72,126)
( 73,115)( 74,116)( 75,113)( 76,114)( 77,119)( 78,120)( 79,117)( 80,118)
( 81, 99)( 82,100)( 83, 97)( 84, 98)( 85,103)( 86,104)( 87,101)( 88,102)
( 89,107)( 90,108)( 91,105)( 92,106)( 93,111)( 94,112)( 95,109)( 96,110);;
s2 := ( 9, 97)( 10, 98)( 11, 99)( 12,100)( 13,101)( 14,102)( 15,103)( 16,104)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)( 24, 64)
( 25, 89)( 26, 90)( 27, 91)( 28, 92)( 29, 93)( 30, 94)( 31, 95)( 32, 96)
( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)( 40, 80)
( 49,113)( 50,114)( 51,115)( 52,116)( 53,117)( 54,118)( 55,119)( 56,120)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)( 88,128);;
s3 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)( 8, 16)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)
( 65,113)( 66,114)( 67,115)( 68,116)( 69,117)( 70,118)( 71,119)( 72,120)
( 73,121)( 74,122)( 75,123)( 76,124)( 77,125)( 78,126)( 79,127)( 80,128)
( 81,105)( 82,106)( 83,107)( 84,108)( 85,109)( 86,110)( 87,111)( 88,112)
( 89, 97)( 90, 98)( 91, 99)( 92,100)( 93,101)( 94,102)( 95,103)( 96,104);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9, 13)( 10, 14)( 11, 16)
( 12, 15)( 17, 21)( 18, 22)( 19, 24)( 20, 23)( 25, 29)( 26, 30)( 27, 32)
( 28, 31)( 33, 37)( 34, 38)( 35, 40)( 36, 39)( 41, 45)( 42, 46)( 43, 48)
( 44, 47)( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 57, 61)( 58, 62)( 59, 64)
( 60, 63)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 73, 77)( 74, 78)( 75, 80)
( 76, 79)( 81, 85)( 82, 86)( 83, 88)( 84, 87)( 89, 93)( 90, 94)( 91, 96)
( 92, 95)( 97,101)( 98,102)( 99,104)(100,103)(105,109)(106,110)(107,112)
(108,111)(113,117)(114,118)(115,120)(116,119)(121,125)(122,126)(123,128)
(124,127);
s1 := Sym(128)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 27)( 18, 28)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 29)
( 24, 30)( 33, 43)( 34, 44)( 35, 41)( 36, 42)( 37, 47)( 38, 48)( 39, 45)
( 40, 46)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65,123)( 66,124)( 67,121)( 68,122)( 69,127)( 70,128)( 71,125)
( 72,126)( 73,115)( 74,116)( 75,113)( 76,114)( 77,119)( 78,120)( 79,117)
( 80,118)( 81, 99)( 82,100)( 83, 97)( 84, 98)( 85,103)( 86,104)( 87,101)
( 88,102)( 89,107)( 90,108)( 91,105)( 92,106)( 93,111)( 94,112)( 95,109)
( 96,110);
s2 := Sym(128)!( 9, 97)( 10, 98)( 11, 99)( 12,100)( 13,101)( 14,102)( 15,103)
( 16,104)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)
( 24, 64)( 25, 89)( 26, 90)( 27, 91)( 28, 92)( 29, 93)( 30, 94)( 31, 95)
( 32, 96)( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)
( 40, 80)( 49,113)( 50,114)( 51,115)( 52,116)( 53,117)( 54,118)( 55,119)
( 56,120)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)
( 88,128);
s3 := Sym(128)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 13)( 6, 14)( 7, 15)
( 8, 16)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)
( 56, 64)( 65,113)( 66,114)( 67,115)( 68,116)( 69,117)( 70,118)( 71,119)
( 72,120)( 73,121)( 74,122)( 75,123)( 76,124)( 77,125)( 78,126)( 79,127)
( 80,128)( 81,105)( 82,106)( 83,107)( 84,108)( 85,109)( 86,110)( 87,111)
( 88,112)( 89, 97)( 90, 98)( 91, 99)( 92,100)( 93,101)( 94,102)( 95,103)
( 96,104);
poly := sub<Sym(128)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope