Polytope of Type {2,2,5,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,5,8}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116450)
Rank : 5
Schlafli Type : {2,2,5,8}
Number of vertices, edges, etc : 2, 2, 20, 80, 32
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,5,4}*640
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  5,165)(  6,166)(  7,185)(  8,186)(  9,191)( 10,192)( 11,179)( 12,180)
( 13,174)( 14,173)( 15,193)( 16,194)( 17,184)( 18,183)( 19,171)( 20,172)
( 21,189)( 22,190)( 23,178)( 24,177)( 25,167)( 26,168)( 27,188)( 28,187)
( 29,181)( 30,182)( 31,169)( 32,170)( 33,175)( 34,176)( 35,195)( 36,196)
( 37,293)( 38,294)( 39,313)( 40,314)( 41,319)( 42,320)( 43,307)( 44,308)
( 45,302)( 46,301)( 47,321)( 48,322)( 49,312)( 50,311)( 51,299)( 52,300)
( 53,317)( 54,318)( 55,306)( 56,305)( 57,295)( 58,296)( 59,316)( 60,315)
( 61,309)( 62,310)( 63,297)( 64,298)( 65,303)( 66,304)( 67,323)( 68,324)
( 69,261)( 70,262)( 71,281)( 72,282)( 73,287)( 74,288)( 75,275)( 76,276)
( 77,270)( 78,269)( 79,289)( 80,290)( 81,280)( 82,279)( 83,267)( 84,268)
( 85,285)( 86,286)( 87,274)( 88,273)( 89,263)( 90,264)( 91,284)( 92,283)
( 93,277)( 94,278)( 95,265)( 96,266)( 97,271)( 98,272)( 99,291)(100,292)
(101,229)(102,230)(103,249)(104,250)(105,255)(106,256)(107,243)(108,244)
(109,238)(110,237)(111,257)(112,258)(113,248)(114,247)(115,235)(116,236)
(117,253)(118,254)(119,242)(120,241)(121,231)(122,232)(123,252)(124,251)
(125,245)(126,246)(127,233)(128,234)(129,239)(130,240)(131,259)(132,260)
(133,197)(134,198)(135,217)(136,218)(137,223)(138,224)(139,211)(140,212)
(141,206)(142,205)(143,225)(144,226)(145,216)(146,215)(147,203)(148,204)
(149,221)(150,222)(151,210)(152,209)(153,199)(154,200)(155,220)(156,219)
(157,213)(158,214)(159,201)(160,202)(161,207)(162,208)(163,227)(164,228);;
s3 := (  5,197)(  6,198)(  7,227)(  8,228)(  9,202)( 10,201)( 11,223)( 12,224)
( 13,210)( 14,209)( 15,215)( 16,216)( 17,206)( 18,205)( 19,220)( 20,219)
( 21,218)( 22,217)( 23,207)( 24,208)( 25,214)( 26,213)( 27,212)( 28,211)
( 29,221)( 30,222)( 31,203)( 32,204)( 33,226)( 34,225)( 35,199)( 36,200)
( 37,165)( 38,166)( 39,195)( 40,196)( 41,170)( 42,169)( 43,191)( 44,192)
( 45,178)( 46,177)( 47,183)( 48,184)( 49,174)( 50,173)( 51,188)( 52,187)
( 53,186)( 54,185)( 55,175)( 56,176)( 57,182)( 58,181)( 59,180)( 60,179)
( 61,189)( 62,190)( 63,171)( 64,172)( 65,194)( 66,193)( 67,167)( 68,168)
( 69,293)( 70,294)( 71,323)( 72,324)( 73,298)( 74,297)( 75,319)( 76,320)
( 77,306)( 78,305)( 79,311)( 80,312)( 81,302)( 82,301)( 83,316)( 84,315)
( 85,314)( 86,313)( 87,303)( 88,304)( 89,310)( 90,309)( 91,308)( 92,307)
( 93,317)( 94,318)( 95,299)( 96,300)( 97,322)( 98,321)( 99,295)(100,296)
(101,261)(102,262)(103,291)(104,292)(105,266)(106,265)(107,287)(108,288)
(109,274)(110,273)(111,279)(112,280)(113,270)(114,269)(115,284)(116,283)
(117,282)(118,281)(119,271)(120,272)(121,278)(122,277)(123,276)(124,275)
(125,285)(126,286)(127,267)(128,268)(129,290)(130,289)(131,263)(132,264)
(133,229)(134,230)(135,259)(136,260)(137,234)(138,233)(139,255)(140,256)
(141,242)(142,241)(143,247)(144,248)(145,238)(146,237)(147,252)(148,251)
(149,250)(150,249)(151,239)(152,240)(153,246)(154,245)(155,244)(156,243)
(157,253)(158,254)(159,235)(160,236)(161,258)(162,257)(163,231)(164,232);;
s4 := (  5, 36)(  6, 35)(  7, 33)(  8, 34)(  9, 31)( 10, 32)( 11, 30)( 12, 29)
( 13, 28)( 14, 27)( 15, 25)( 16, 26)( 17, 23)( 18, 24)( 19, 22)( 20, 21)
( 37, 68)( 38, 67)( 39, 65)( 40, 66)( 41, 63)( 42, 64)( 43, 62)( 44, 61)
( 45, 60)( 46, 59)( 47, 57)( 48, 58)( 49, 55)( 50, 56)( 51, 54)( 52, 53)
( 69,100)( 70, 99)( 71, 97)( 72, 98)( 73, 95)( 74, 96)( 75, 94)( 76, 93)
( 77, 92)( 78, 91)( 79, 89)( 80, 90)( 81, 87)( 82, 88)( 83, 86)( 84, 85)
(101,132)(102,131)(103,129)(104,130)(105,127)(106,128)(107,126)(108,125)
(109,124)(110,123)(111,121)(112,122)(113,119)(114,120)(115,118)(116,117)
(133,164)(134,163)(135,161)(136,162)(137,159)(138,160)(139,158)(140,157)
(141,156)(142,155)(143,153)(144,154)(145,151)(146,152)(147,150)(148,149)
(165,196)(166,195)(167,193)(168,194)(169,191)(170,192)(171,190)(172,189)
(173,188)(174,187)(175,185)(176,186)(177,183)(178,184)(179,182)(180,181)
(197,228)(198,227)(199,225)(200,226)(201,223)(202,224)(203,222)(204,221)
(205,220)(206,219)(207,217)(208,218)(209,215)(210,216)(211,214)(212,213)
(229,260)(230,259)(231,257)(232,258)(233,255)(234,256)(235,254)(236,253)
(237,252)(238,251)(239,249)(240,250)(241,247)(242,248)(243,246)(244,245)
(261,292)(262,291)(263,289)(264,290)(265,287)(266,288)(267,286)(268,285)
(269,284)(270,283)(271,281)(272,282)(273,279)(274,280)(275,278)(276,277)
(293,324)(294,323)(295,321)(296,322)(297,319)(298,320)(299,318)(300,317)
(301,316)(302,315)(303,313)(304,314)(305,311)(306,312)(307,310)(308,309);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3*s4*s3, 
s2*s3*s2*s3*s4*s3*s4*s3*s2*s3*s4*s2*s3*s2*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(324)!(1,2);
s1 := Sym(324)!(3,4);
s2 := Sym(324)!(  5,165)(  6,166)(  7,185)(  8,186)(  9,191)( 10,192)( 11,179)
( 12,180)( 13,174)( 14,173)( 15,193)( 16,194)( 17,184)( 18,183)( 19,171)
( 20,172)( 21,189)( 22,190)( 23,178)( 24,177)( 25,167)( 26,168)( 27,188)
( 28,187)( 29,181)( 30,182)( 31,169)( 32,170)( 33,175)( 34,176)( 35,195)
( 36,196)( 37,293)( 38,294)( 39,313)( 40,314)( 41,319)( 42,320)( 43,307)
( 44,308)( 45,302)( 46,301)( 47,321)( 48,322)( 49,312)( 50,311)( 51,299)
( 52,300)( 53,317)( 54,318)( 55,306)( 56,305)( 57,295)( 58,296)( 59,316)
( 60,315)( 61,309)( 62,310)( 63,297)( 64,298)( 65,303)( 66,304)( 67,323)
( 68,324)( 69,261)( 70,262)( 71,281)( 72,282)( 73,287)( 74,288)( 75,275)
( 76,276)( 77,270)( 78,269)( 79,289)( 80,290)( 81,280)( 82,279)( 83,267)
( 84,268)( 85,285)( 86,286)( 87,274)( 88,273)( 89,263)( 90,264)( 91,284)
( 92,283)( 93,277)( 94,278)( 95,265)( 96,266)( 97,271)( 98,272)( 99,291)
(100,292)(101,229)(102,230)(103,249)(104,250)(105,255)(106,256)(107,243)
(108,244)(109,238)(110,237)(111,257)(112,258)(113,248)(114,247)(115,235)
(116,236)(117,253)(118,254)(119,242)(120,241)(121,231)(122,232)(123,252)
(124,251)(125,245)(126,246)(127,233)(128,234)(129,239)(130,240)(131,259)
(132,260)(133,197)(134,198)(135,217)(136,218)(137,223)(138,224)(139,211)
(140,212)(141,206)(142,205)(143,225)(144,226)(145,216)(146,215)(147,203)
(148,204)(149,221)(150,222)(151,210)(152,209)(153,199)(154,200)(155,220)
(156,219)(157,213)(158,214)(159,201)(160,202)(161,207)(162,208)(163,227)
(164,228);
s3 := Sym(324)!(  5,197)(  6,198)(  7,227)(  8,228)(  9,202)( 10,201)( 11,223)
( 12,224)( 13,210)( 14,209)( 15,215)( 16,216)( 17,206)( 18,205)( 19,220)
( 20,219)( 21,218)( 22,217)( 23,207)( 24,208)( 25,214)( 26,213)( 27,212)
( 28,211)( 29,221)( 30,222)( 31,203)( 32,204)( 33,226)( 34,225)( 35,199)
( 36,200)( 37,165)( 38,166)( 39,195)( 40,196)( 41,170)( 42,169)( 43,191)
( 44,192)( 45,178)( 46,177)( 47,183)( 48,184)( 49,174)( 50,173)( 51,188)
( 52,187)( 53,186)( 54,185)( 55,175)( 56,176)( 57,182)( 58,181)( 59,180)
( 60,179)( 61,189)( 62,190)( 63,171)( 64,172)( 65,194)( 66,193)( 67,167)
( 68,168)( 69,293)( 70,294)( 71,323)( 72,324)( 73,298)( 74,297)( 75,319)
( 76,320)( 77,306)( 78,305)( 79,311)( 80,312)( 81,302)( 82,301)( 83,316)
( 84,315)( 85,314)( 86,313)( 87,303)( 88,304)( 89,310)( 90,309)( 91,308)
( 92,307)( 93,317)( 94,318)( 95,299)( 96,300)( 97,322)( 98,321)( 99,295)
(100,296)(101,261)(102,262)(103,291)(104,292)(105,266)(106,265)(107,287)
(108,288)(109,274)(110,273)(111,279)(112,280)(113,270)(114,269)(115,284)
(116,283)(117,282)(118,281)(119,271)(120,272)(121,278)(122,277)(123,276)
(124,275)(125,285)(126,286)(127,267)(128,268)(129,290)(130,289)(131,263)
(132,264)(133,229)(134,230)(135,259)(136,260)(137,234)(138,233)(139,255)
(140,256)(141,242)(142,241)(143,247)(144,248)(145,238)(146,237)(147,252)
(148,251)(149,250)(150,249)(151,239)(152,240)(153,246)(154,245)(155,244)
(156,243)(157,253)(158,254)(159,235)(160,236)(161,258)(162,257)(163,231)
(164,232);
s4 := Sym(324)!(  5, 36)(  6, 35)(  7, 33)(  8, 34)(  9, 31)( 10, 32)( 11, 30)
( 12, 29)( 13, 28)( 14, 27)( 15, 25)( 16, 26)( 17, 23)( 18, 24)( 19, 22)
( 20, 21)( 37, 68)( 38, 67)( 39, 65)( 40, 66)( 41, 63)( 42, 64)( 43, 62)
( 44, 61)( 45, 60)( 46, 59)( 47, 57)( 48, 58)( 49, 55)( 50, 56)( 51, 54)
( 52, 53)( 69,100)( 70, 99)( 71, 97)( 72, 98)( 73, 95)( 74, 96)( 75, 94)
( 76, 93)( 77, 92)( 78, 91)( 79, 89)( 80, 90)( 81, 87)( 82, 88)( 83, 86)
( 84, 85)(101,132)(102,131)(103,129)(104,130)(105,127)(106,128)(107,126)
(108,125)(109,124)(110,123)(111,121)(112,122)(113,119)(114,120)(115,118)
(116,117)(133,164)(134,163)(135,161)(136,162)(137,159)(138,160)(139,158)
(140,157)(141,156)(142,155)(143,153)(144,154)(145,151)(146,152)(147,150)
(148,149)(165,196)(166,195)(167,193)(168,194)(169,191)(170,192)(171,190)
(172,189)(173,188)(174,187)(175,185)(176,186)(177,183)(178,184)(179,182)
(180,181)(197,228)(198,227)(199,225)(200,226)(201,223)(202,224)(203,222)
(204,221)(205,220)(206,219)(207,217)(208,218)(209,215)(210,216)(211,214)
(212,213)(229,260)(230,259)(231,257)(232,258)(233,255)(234,256)(235,254)
(236,253)(237,252)(238,251)(239,249)(240,250)(241,247)(242,248)(243,246)
(244,245)(261,292)(262,291)(263,289)(264,290)(265,287)(266,288)(267,286)
(268,285)(269,284)(270,283)(271,281)(272,282)(273,279)(274,280)(275,278)
(276,277)(293,324)(294,323)(295,321)(296,322)(297,319)(298,320)(299,318)
(300,317)(301,316)(302,315)(303,313)(304,314)(305,311)(306,312)(307,310)
(308,309);
poly := sub<Sym(324)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s4*s3*s4*s3*s2*s3*s4*s3*s4*s3*s4*s3, 
s2*s3*s2*s3*s4*s3*s4*s3*s2*s3*s4*s2*s3*s2*s4*s3*s4 >; 
 

to this polytope