include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,2}*1280c
if this polytope has a name.
Group : SmallGroup(1280,1116450)
Rank : 4
Schlafli Type : {10,10,2}
Number of vertices, edges, etc : 32, 160, 32, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,10,2}*640a, {10,5,2}*640b
4-fold quotients : {5,5,2}*320
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 28)( 4, 27)( 5, 15)( 6, 16)( 7, 21)( 8, 22)( 9, 18)( 10, 17)
( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)( 34,130)
( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)( 42,145)
( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)( 50,137)
( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)( 58,153)
( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)( 66, 98)
( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)( 74,113)
( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)( 82,105)
( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)( 90,121)
( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(163,188)(164,187)
(165,175)(166,176)(167,181)(168,182)(169,178)(170,177)(171,172)(173,192)
(174,191)(183,189)(184,190)(185,186)(193,289)(194,290)(195,316)(196,315)
(197,303)(198,304)(199,309)(200,310)(201,306)(202,305)(203,300)(204,299)
(205,320)(206,319)(207,293)(208,294)(209,298)(210,297)(211,307)(212,308)
(213,295)(214,296)(215,317)(216,318)(217,314)(218,313)(219,292)(220,291)
(221,311)(222,312)(223,302)(224,301)(225,257)(226,258)(227,284)(228,283)
(229,271)(230,272)(231,277)(232,278)(233,274)(234,273)(235,268)(236,267)
(237,288)(238,287)(239,261)(240,262)(241,266)(242,265)(243,275)(244,276)
(245,263)(246,264)(247,285)(248,286)(249,282)(250,281)(251,260)(252,259)
(253,279)(254,280)(255,270)(256,269);;
s1 := ( 1,193)( 2,194)( 3,215)( 4,216)( 5,217)( 6,218)( 7,207)( 8,208)
( 9,202)( 10,201)( 11,223)( 12,224)( 13,210)( 14,209)( 15,199)( 16,200)
( 17,206)( 18,205)( 19,219)( 20,220)( 21,214)( 22,213)( 23,195)( 24,196)
( 25,197)( 26,198)( 27,211)( 28,212)( 29,221)( 30,222)( 31,203)( 32,204)
( 33,161)( 34,162)( 35,183)( 36,184)( 37,185)( 38,186)( 39,175)( 40,176)
( 41,170)( 42,169)( 43,191)( 44,192)( 45,178)( 46,177)( 47,167)( 48,168)
( 49,174)( 50,173)( 51,187)( 52,188)( 53,182)( 54,181)( 55,163)( 56,164)
( 57,165)( 58,166)( 59,179)( 60,180)( 61,189)( 62,190)( 63,171)( 64,172)
( 65,289)( 66,290)( 67,311)( 68,312)( 69,313)( 70,314)( 71,303)( 72,304)
( 73,298)( 74,297)( 75,319)( 76,320)( 77,306)( 78,305)( 79,295)( 80,296)
( 81,302)( 82,301)( 83,315)( 84,316)( 85,310)( 86,309)( 87,291)( 88,292)
( 89,293)( 90,294)( 91,307)( 92,308)( 93,317)( 94,318)( 95,299)( 96,300)
( 97,257)( 98,258)( 99,279)(100,280)(101,281)(102,282)(103,271)(104,272)
(105,266)(106,265)(107,287)(108,288)(109,274)(110,273)(111,263)(112,264)
(113,270)(114,269)(115,283)(116,284)(117,278)(118,277)(119,259)(120,260)
(121,261)(122,262)(123,275)(124,276)(125,285)(126,286)(127,267)(128,268)
(129,225)(130,226)(131,247)(132,248)(133,249)(134,250)(135,239)(136,240)
(137,234)(138,233)(139,255)(140,256)(141,242)(142,241)(143,231)(144,232)
(145,238)(146,237)(147,251)(148,252)(149,246)(150,245)(151,227)(152,228)
(153,229)(154,230)(155,243)(156,244)(157,253)(158,254)(159,235)(160,236);;
s2 := ( 1,179)( 2,180)( 3,169)( 4,170)( 5,190)( 6,189)( 7,167)( 8,168)
( 9,163)( 10,164)( 11,186)( 12,185)( 13,174)( 14,173)( 15,184)( 16,183)
( 17,187)( 18,188)( 19,161)( 20,162)( 21,181)( 22,182)( 23,176)( 24,175)
( 25,172)( 26,171)( 27,177)( 28,178)( 29,166)( 30,165)( 31,192)( 32,191)
( 33,307)( 34,308)( 35,297)( 36,298)( 37,318)( 38,317)( 39,295)( 40,296)
( 41,291)( 42,292)( 43,314)( 44,313)( 45,302)( 46,301)( 47,312)( 48,311)
( 49,315)( 50,316)( 51,289)( 52,290)( 53,309)( 54,310)( 55,304)( 56,303)
( 57,300)( 58,299)( 59,305)( 60,306)( 61,294)( 62,293)( 63,320)( 64,319)
( 65,275)( 66,276)( 67,265)( 68,266)( 69,286)( 70,285)( 71,263)( 72,264)
( 73,259)( 74,260)( 75,282)( 76,281)( 77,270)( 78,269)( 79,280)( 80,279)
( 81,283)( 82,284)( 83,257)( 84,258)( 85,277)( 86,278)( 87,272)( 88,271)
( 89,268)( 90,267)( 91,273)( 92,274)( 93,262)( 94,261)( 95,288)( 96,287)
( 97,243)( 98,244)( 99,233)(100,234)(101,254)(102,253)(103,231)(104,232)
(105,227)(106,228)(107,250)(108,249)(109,238)(110,237)(111,248)(112,247)
(113,251)(114,252)(115,225)(116,226)(117,245)(118,246)(119,240)(120,239)
(121,236)(122,235)(123,241)(124,242)(125,230)(126,229)(127,256)(128,255)
(129,211)(130,212)(131,201)(132,202)(133,222)(134,221)(135,199)(136,200)
(137,195)(138,196)(139,218)(140,217)(141,206)(142,205)(143,216)(144,215)
(145,219)(146,220)(147,193)(148,194)(149,213)(150,214)(151,208)(152,207)
(153,204)(154,203)(155,209)(156,210)(157,198)(158,197)(159,224)(160,223);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!( 3, 28)( 4, 27)( 5, 15)( 6, 16)( 7, 21)( 8, 22)( 9, 18)
( 10, 17)( 11, 12)( 13, 32)( 14, 31)( 23, 29)( 24, 30)( 25, 26)( 33,129)
( 34,130)( 35,156)( 36,155)( 37,143)( 38,144)( 39,149)( 40,150)( 41,146)
( 42,145)( 43,140)( 44,139)( 45,160)( 46,159)( 47,133)( 48,134)( 49,138)
( 50,137)( 51,147)( 52,148)( 53,135)( 54,136)( 55,157)( 56,158)( 57,154)
( 58,153)( 59,132)( 60,131)( 61,151)( 62,152)( 63,142)( 64,141)( 65, 97)
( 66, 98)( 67,124)( 68,123)( 69,111)( 70,112)( 71,117)( 72,118)( 73,114)
( 74,113)( 75,108)( 76,107)( 77,128)( 78,127)( 79,101)( 80,102)( 81,106)
( 82,105)( 83,115)( 84,116)( 85,103)( 86,104)( 87,125)( 88,126)( 89,122)
( 90,121)( 91,100)( 92, 99)( 93,119)( 94,120)( 95,110)( 96,109)(163,188)
(164,187)(165,175)(166,176)(167,181)(168,182)(169,178)(170,177)(171,172)
(173,192)(174,191)(183,189)(184,190)(185,186)(193,289)(194,290)(195,316)
(196,315)(197,303)(198,304)(199,309)(200,310)(201,306)(202,305)(203,300)
(204,299)(205,320)(206,319)(207,293)(208,294)(209,298)(210,297)(211,307)
(212,308)(213,295)(214,296)(215,317)(216,318)(217,314)(218,313)(219,292)
(220,291)(221,311)(222,312)(223,302)(224,301)(225,257)(226,258)(227,284)
(228,283)(229,271)(230,272)(231,277)(232,278)(233,274)(234,273)(235,268)
(236,267)(237,288)(238,287)(239,261)(240,262)(241,266)(242,265)(243,275)
(244,276)(245,263)(246,264)(247,285)(248,286)(249,282)(250,281)(251,260)
(252,259)(253,279)(254,280)(255,270)(256,269);
s1 := Sym(322)!( 1,193)( 2,194)( 3,215)( 4,216)( 5,217)( 6,218)( 7,207)
( 8,208)( 9,202)( 10,201)( 11,223)( 12,224)( 13,210)( 14,209)( 15,199)
( 16,200)( 17,206)( 18,205)( 19,219)( 20,220)( 21,214)( 22,213)( 23,195)
( 24,196)( 25,197)( 26,198)( 27,211)( 28,212)( 29,221)( 30,222)( 31,203)
( 32,204)( 33,161)( 34,162)( 35,183)( 36,184)( 37,185)( 38,186)( 39,175)
( 40,176)( 41,170)( 42,169)( 43,191)( 44,192)( 45,178)( 46,177)( 47,167)
( 48,168)( 49,174)( 50,173)( 51,187)( 52,188)( 53,182)( 54,181)( 55,163)
( 56,164)( 57,165)( 58,166)( 59,179)( 60,180)( 61,189)( 62,190)( 63,171)
( 64,172)( 65,289)( 66,290)( 67,311)( 68,312)( 69,313)( 70,314)( 71,303)
( 72,304)( 73,298)( 74,297)( 75,319)( 76,320)( 77,306)( 78,305)( 79,295)
( 80,296)( 81,302)( 82,301)( 83,315)( 84,316)( 85,310)( 86,309)( 87,291)
( 88,292)( 89,293)( 90,294)( 91,307)( 92,308)( 93,317)( 94,318)( 95,299)
( 96,300)( 97,257)( 98,258)( 99,279)(100,280)(101,281)(102,282)(103,271)
(104,272)(105,266)(106,265)(107,287)(108,288)(109,274)(110,273)(111,263)
(112,264)(113,270)(114,269)(115,283)(116,284)(117,278)(118,277)(119,259)
(120,260)(121,261)(122,262)(123,275)(124,276)(125,285)(126,286)(127,267)
(128,268)(129,225)(130,226)(131,247)(132,248)(133,249)(134,250)(135,239)
(136,240)(137,234)(138,233)(139,255)(140,256)(141,242)(142,241)(143,231)
(144,232)(145,238)(146,237)(147,251)(148,252)(149,246)(150,245)(151,227)
(152,228)(153,229)(154,230)(155,243)(156,244)(157,253)(158,254)(159,235)
(160,236);
s2 := Sym(322)!( 1,179)( 2,180)( 3,169)( 4,170)( 5,190)( 6,189)( 7,167)
( 8,168)( 9,163)( 10,164)( 11,186)( 12,185)( 13,174)( 14,173)( 15,184)
( 16,183)( 17,187)( 18,188)( 19,161)( 20,162)( 21,181)( 22,182)( 23,176)
( 24,175)( 25,172)( 26,171)( 27,177)( 28,178)( 29,166)( 30,165)( 31,192)
( 32,191)( 33,307)( 34,308)( 35,297)( 36,298)( 37,318)( 38,317)( 39,295)
( 40,296)( 41,291)( 42,292)( 43,314)( 44,313)( 45,302)( 46,301)( 47,312)
( 48,311)( 49,315)( 50,316)( 51,289)( 52,290)( 53,309)( 54,310)( 55,304)
( 56,303)( 57,300)( 58,299)( 59,305)( 60,306)( 61,294)( 62,293)( 63,320)
( 64,319)( 65,275)( 66,276)( 67,265)( 68,266)( 69,286)( 70,285)( 71,263)
( 72,264)( 73,259)( 74,260)( 75,282)( 76,281)( 77,270)( 78,269)( 79,280)
( 80,279)( 81,283)( 82,284)( 83,257)( 84,258)( 85,277)( 86,278)( 87,272)
( 88,271)( 89,268)( 90,267)( 91,273)( 92,274)( 93,262)( 94,261)( 95,288)
( 96,287)( 97,243)( 98,244)( 99,233)(100,234)(101,254)(102,253)(103,231)
(104,232)(105,227)(106,228)(107,250)(108,249)(109,238)(110,237)(111,248)
(112,247)(113,251)(114,252)(115,225)(116,226)(117,245)(118,246)(119,240)
(120,239)(121,236)(122,235)(123,241)(124,242)(125,230)(126,229)(127,256)
(128,255)(129,211)(130,212)(131,201)(132,202)(133,222)(134,221)(135,199)
(136,200)(137,195)(138,196)(139,218)(140,217)(141,206)(142,205)(143,216)
(144,215)(145,219)(146,220)(147,193)(148,194)(149,213)(150,214)(151,208)
(152,207)(153,204)(154,203)(155,209)(156,210)(157,198)(158,197)(159,224)
(160,223);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope