include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,8}*1280d
if this polytope has a name.
Group : SmallGroup(1280,1116454)
Rank : 3
Schlafli Type : {10,8}
Number of vertices, edges, etc : 80, 320, 64
Order of s0s1s2 : 20
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,8}*640b, {10,4}*640b
4-fold quotients : {5,4}*320, {10,4}*320a, {10,4}*320b
8-fold quotients : {5,4}*160
32-fold quotients : {10,2}*40
64-fold quotients : {5,2}*20
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)( 20, 28)
( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)( 36, 43)
( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)( 61, 62)
( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)( 72,127)
( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)( 80,119)
( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)
( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)( 96,111);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,102)( 10,101)( 11,103)( 12,104)
( 13, 98)( 14, 97)( 15, 99)( 16,100)( 17, 62)( 18, 61)( 19, 63)( 20, 64)
( 21, 58)( 22, 57)( 23, 59)( 24, 60)( 25, 94)( 26, 93)( 27, 95)( 28, 96)
( 29, 90)( 30, 89)( 31, 91)( 32, 92)( 33, 78)( 34, 77)( 35, 79)( 36, 80)
( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 46)( 42, 45)( 43, 47)( 44, 48)
( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)( 56,115)
( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 81,126)( 82,125)( 83,127)( 84,128)
( 85,122)( 86,121)( 87,123)( 88,124)(105,110)(106,109)(107,111)(108,112);;
s2 := ( 1, 60)( 2, 59)( 3, 57)( 4, 58)( 5, 64)( 6, 63)( 7, 61)( 8, 62)
( 9, 52)( 10, 51)( 11, 49)( 12, 50)( 13, 56)( 14, 55)( 15, 53)( 16, 54)
( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)( 24, 46)
( 25, 36)( 26, 35)( 27, 33)( 28, 34)( 29, 40)( 30, 39)( 31, 37)( 32, 38)
( 65,124)( 66,123)( 67,121)( 68,122)( 69,128)( 70,127)( 71,125)( 72,126)
( 73,116)( 74,115)( 75,113)( 76,114)( 77,120)( 78,119)( 79,117)( 80,118)
( 81,108)( 82,107)( 83,105)( 84,106)( 85,112)( 86,111)( 87,109)( 88,110)
( 89,100)( 90, 99)( 91, 97)( 92, 98)( 93,104)( 94,103)( 95,101)( 96,102);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 17, 26)( 18, 25)( 19, 27)
( 20, 28)( 21, 30)( 22, 29)( 23, 31)( 24, 32)( 33, 41)( 34, 42)( 35, 44)
( 36, 43)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 49, 50)( 53, 54)( 57, 58)
( 61, 62)( 65,121)( 66,122)( 67,124)( 68,123)( 69,125)( 70,126)( 71,128)
( 72,127)( 73,113)( 74,114)( 75,116)( 76,115)( 77,117)( 78,118)( 79,120)
( 80,119)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)
( 88,103)( 89,105)( 90,106)( 91,108)( 92,107)( 93,109)( 94,110)( 95,112)
( 96,111);
s1 := Sym(128)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,102)( 10,101)( 11,103)
( 12,104)( 13, 98)( 14, 97)( 15, 99)( 16,100)( 17, 62)( 18, 61)( 19, 63)
( 20, 64)( 21, 58)( 22, 57)( 23, 59)( 24, 60)( 25, 94)( 26, 93)( 27, 95)
( 28, 96)( 29, 90)( 30, 89)( 31, 91)( 32, 92)( 33, 78)( 34, 77)( 35, 79)
( 36, 80)( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 46)( 42, 45)( 43, 47)
( 44, 48)( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)
( 56,115)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 81,126)( 82,125)( 83,127)
( 84,128)( 85,122)( 86,121)( 87,123)( 88,124)(105,110)(106,109)(107,111)
(108,112);
s2 := Sym(128)!( 1, 60)( 2, 59)( 3, 57)( 4, 58)( 5, 64)( 6, 63)( 7, 61)
( 8, 62)( 9, 52)( 10, 51)( 11, 49)( 12, 50)( 13, 56)( 14, 55)( 15, 53)
( 16, 54)( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)
( 24, 46)( 25, 36)( 26, 35)( 27, 33)( 28, 34)( 29, 40)( 30, 39)( 31, 37)
( 32, 38)( 65,124)( 66,123)( 67,121)( 68,122)( 69,128)( 70,127)( 71,125)
( 72,126)( 73,116)( 74,115)( 75,113)( 76,114)( 77,120)( 78,119)( 79,117)
( 80,118)( 81,108)( 82,107)( 83,105)( 84,106)( 85,112)( 86,111)( 87,109)
( 88,110)( 89,100)( 90, 99)( 91, 97)( 92, 98)( 93,104)( 94,103)( 95,101)
( 96,102);
poly := sub<Sym(128)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope